Multimodal prediction of major adverse cardiovascular events in hypertensive patients with coronary artery disease: integrating pericoronary fat radiomics, CT-FFR, and clinicoradiological features

狼牙棒 医学 冠状动脉疾病 接收机工作特性 计算机辅助设计 逻辑回归 无线电技术 部分流量储备 内科学 放射科 Lasso(编程语言) 曲线下面积 心脏病学 人工智能 算法 冠状动脉造影 数学 计算机科学 心肌梗塞 工程制图 万维网 工程类 传统PCI
作者
Qing Zou,Taichun Qiu,Chunxiao Liang,Xiaodong Fang,Yanling Zheng,Jie Li,Xingchen Li,Yudan Li,Zhongyan Lu,Bing Ming
出处
期刊:Radiologia Medica [Springer Science+Business Media]
标识
DOI:10.1007/s11547-025-01991-3
摘要

Abstract Purpose People with both hypertension and coronary artery disease (CAD) are at a significantly increased risk of major adverse cardiovascular events (MACEs). This study aimed to develop and validate a combination model that integrates radiomics features of pericoronary adipose tissue (PCAT), CT-derived fractional flow reserve (CT-FFR), and clinicoradiological features, which improves MACE prediction within two years. Materials and methods Coronary-computed tomography angiography data were gathered from 237 patients diagnosed with hypertension and CAD. These patients were randomly categorized into training and testing cohorts at a 7:3 ratio (165:72). The least absolute shrinkage and selection operator logistic regression and linear discriminant analysis method were used to select optimal radiomics characteristics. The predictive performance of the combination model was assessed through receiver operating characteristic curve analysis and validated via calibration, decision, and clinical impact curves. Results The results reveal that the combination model (Radiomics.Clinical.Imaging) improves the discriminatory ability for predicting MACE. Its predictive efficacy is comparable to that of the Radiomics.Imaging model in both the training (0.886 vs. 0.872) and testing cohorts (0.786 vs. 0.815), but the combination model exhibits significantly improved specificity, accuracy, and precision. Decision and clinical impact curves further confirm the use of the combination prediction model in clinical practice. Conclusions The combination prediction model, which incorporates clinicoradiological features, CT-FFR, and radiomics features of PCAT, is a potential biomarker for predicting MACE in people with hypertension and CAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI2S应助科视采纳,获得10
2秒前
2秒前
guojingjing发布了新的文献求助10
2秒前
4秒前
支雨泽发布了新的文献求助10
4秒前
李雪蒙完成签到,获得积分10
5秒前
HJJHJH完成签到,获得积分20
5秒前
张培培发布了新的文献求助10
6秒前
ds完成签到,获得积分10
6秒前
酷酷的滕发布了新的文献求助10
6秒前
正太低音炮完成签到,获得积分10
7秒前
阿七发布了新的文献求助10
9秒前
10秒前
小桑桑完成签到,获得积分10
11秒前
Felix完成签到 ,获得积分10
11秒前
13秒前
小万完成签到 ,获得积分10
14秒前
remimazolam发布了新的文献求助30
14秒前
qwwer发布了新的文献求助10
15秒前
杨一天完成签到 ,获得积分10
16秒前
阿仪发布了新的文献求助10
17秒前
irenelijiaaa发布了新的文献求助10
17秒前
深情安青应助hhhhhy采纳,获得10
18秒前
博修发布了新的文献求助10
20秒前
22秒前
SWD完成签到,获得积分10
22秒前
24秒前
Lucas应助博修采纳,获得10
27秒前
搜集达人应助qwwer采纳,获得10
27秒前
希望天下0贩的0应助旷意采纳,获得10
28秒前
张培培完成签到,获得积分10
28秒前
深情安青应助萤阳采纳,获得10
30秒前
赘婿应助科研通管家采纳,获得10
32秒前
李健应助科研通管家采纳,获得10
32秒前
ED应助科研通管家采纳,获得10
32秒前
32秒前
完美世界应助科研通管家采纳,获得10
32秒前
脑洞疼应助科研通管家采纳,获得10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938827
求助须知:如何正确求助?哪些是违规求助? 3484566
关于积分的说明 11028968
捐赠科研通 3214447
什么是DOI,文献DOI怎么找? 1776730
邀请新用户注册赠送积分活动 862954
科研通“疑难数据库(出版商)”最低求助积分说明 798629