亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new data processing strategy combined with a convolutional neural network for rapid and accurate prediction of geographical classifications of natural products

可追溯性 计算机科学 卷积神经网络 指纹(计算) 人工智能 数据挖掘 人工神经网络 领域(数学) 模式识别(心理学) 机器学习 数学 软件工程 纯数学
作者
Bingwen Zhou,Mengke Jia,Fan Zhang,Jin Qi,Boyang Yu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:227: 104594-104594 被引量:2
标识
DOI:10.1016/j.chemolab.2022.104594
摘要

Geographic traceability has attracted attention in the field of food and natural products. It is related to security and quality and is inseparable from the vital interests of producers and consumers. A conventional method for geographic traceability is to combine chemical fingerprints with chemometrics. However, insufficient information is provided from a single detection system for high accuracy traceability. This study uses 'Two-Elements-Multi-Information-Fingerprints' (TEMIF) to obtain more fingerprint information, implemented on Cnidium monnieri (L.) Cuss from six different provinces in eastern China. Due to differing polarities, the chemical compositions of the sample can be divided into weak polar parts and strong polar parts. Different chromatographic systems were used to detect different polar compositions. All chromatograms obtained were deconstructed and reconstructed into TEMIF. The frequently used classification models have poor performance in such complex data. Therefore, a convolutional neural network (CNN) was used to process TEMIF. As a result, the more information carried on the fingerprint, the higher is the model's classification accuracy. The accuracy of the CNN model was much higher than that of the traditional machine learning model. Under the same data, support vector machine has the highest accuracy of 62.67% among the three traditional machine learning models, while CNN model can reach 99.80%. On the premise of enriching chemical information, our strategy greatly improved accuracy and made the geographic traceability model more rapid. The online automatic geographic traceability could be realized using a combination of the model and chromatographic workstation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666发布了新的文献求助10
52秒前
Panther完成签到,获得积分10
1分钟前
1分钟前
jeff发布了新的文献求助10
1分钟前
666完成签到,获得积分10
1分钟前
sleet完成签到 ,获得积分10
2分钟前
3分钟前
wanci应助Liu采纳,获得10
3分钟前
4分钟前
Liu发布了新的文献求助10
4分钟前
Liu完成签到,获得积分10
5分钟前
5分钟前
兴奋的定帮完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
科研螺丝完成签到 ,获得积分10
5分钟前
诸乘风完成签到 ,获得积分10
5分钟前
啥时候吃火锅完成签到 ,获得积分0
7分钟前
7分钟前
卡卡咧咧发布了新的文献求助10
7分钟前
无花果应助hugeyoung采纳,获得10
7分钟前
庾亦绿发布了新的文献求助30
7分钟前
7分钟前
烟花应助科研通管家采纳,获得100
7分钟前
科研通AI2S应助科研通管家采纳,获得30
7分钟前
zz发布了新的文献求助10
7分钟前
7分钟前
cyx发布了新的文献求助10
7分钟前
852应助cyx采纳,获得10
8分钟前
Akim应助zz采纳,获得10
8分钟前
庾亦绿完成签到,获得积分10
8分钟前
与共完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
胖胖猪完成签到,获得积分10
9分钟前
无情的友容完成签到 ,获得积分10
10分钟前
10分钟前
猕猴桃猴发布了新的文献求助10
11分钟前
13分钟前
nnnnnn发布了新的文献求助10
13分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779140
求助须知:如何正确求助?哪些是违规求助? 3324759
关于积分的说明 10219855
捐赠科研通 3039890
什么是DOI,文献DOI怎么找? 1668476
邀请新用户注册赠送积分活动 798658
科研通“疑难数据库(出版商)”最低求助积分说明 758503