Dual Contrastive Learning for Cross-domain Named Entity Recognition

对偶(语法数字) 计算机科学 自然语言处理 人工智能 领域(数学分析) 实体链接 命名实体识别 语音识别 语言学 数学 工程类 知识库 数学分析 哲学 系统工程 任务(项目管理)
作者
Jingyun Xu,Junnan Yu,Yi Cai,Tat‐Seng Chua
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (6): 1-33
标识
DOI:10.1145/3678879
摘要

Benefiting many information retrieval applications, named entity recognition (NER) has shown impressive progress. Recently, there has been a growing trend to decompose complex NER tasks into two subtasks (e.g., entity span detection (ESD) and entity type classification (ETC), to achieve better performance. Despite the remarkable success, from the perspective of representation, existing methods do not explicitly distinguish non-entities and entities, which may lead to ESD errors. Meanwhile, they do not explicitly distinguish entities with different entity types, which may lead to entity type misclassification. As such, the limited representation abilities may challenge some competitive NER methods, leading to unsatisfactory performance, especially in the low-resource setting (e.g., cross-domain NER). In light of these challenges, we propose to utilize contrastive learning to refine the original chaotic representations and learn the generalized representations for cross-domain NER. In particular, this article proposes a dual contrastive learning model (Dual-CL), which respectively utilizes a token-level contrastive learning module and a sentence-level contrastive learning module to enhance ESD, ETC for cross-domain NER. Empirical results on 10 domain pairs under two different settings show that Dual-CL achieves better performances than compared baselines in terms of several standard metrics. Moreover, we conduct detailed analyses to are presented to better understand each component’s effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动漫大师发布了新的文献求助10
刚刚
博ge完成签到 ,获得积分10
2秒前
研友完成签到 ,获得积分10
2秒前
HY完成签到 ,获得积分10
2秒前
Sherling发布了新的文献求助10
3秒前
moonlin完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
言非离完成签到 ,获得积分10
13秒前
酷波er应助Sherling采纳,获得10
14秒前
15秒前
15秒前
18秒前
苗笑卉发布了新的文献求助10
19秒前
鱼儿游完成签到 ,获得积分10
19秒前
hjygzv完成签到,获得积分10
22秒前
Wang发布了新的文献求助10
22秒前
jenningseastera应助苗笑卉采纳,获得10
27秒前
二世小卒完成签到 ,获得积分10
43秒前
43秒前
48秒前
cavendipeng完成签到,获得积分10
48秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825056
求助须知:如何正确求助?哪些是违规求助? 3367362
关于积分的说明 10445316
捐赠科研通 3086761
什么是DOI,文献DOI怎么找? 1698266
邀请新用户注册赠送积分活动 816682
科研通“疑难数据库(出版商)”最低求助积分说明 769911