已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FC-YOLO: an aircraft skin defect detection algorithm based on multi-scale collaborative feature fusion

最小边界框 比例(比率) 特征(语言学) 融合 计算机科学 骨干网 跳跃式监视 理论(学习稳定性) 人工智能 功能(生物学) 算法 模式识别(心理学) 图像(数学) 机器学习 物理 生物 进化生物学 计算机网络 量子力学 语言学 哲学
作者
Wei Zhang,Jiyuan Liu,Zhiqi Yan,Minghang Zhao,Xuyun Fu,Hengjia Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 115405-115405
标识
DOI:10.1088/1361-6501/ad6bad
摘要

Abstract Aircraft skin defects pose a threat to the safety and airworthiness of the aircraft. The front line of engineering has requirements of high precision and stable defect detection, which cannot be met by existing deep learning methods, due to conflicting information between multi-scale features. Herein, a Fine-Coordinated YOLO (FC-YOLO) algorithm is proposed to detect aircraft skin defects. Firstly, the ELAN-C module with Coordinate & Channel Attention mechanism is applied to the backbone network to enhance multi-scale detection precision. Secondly, the Adaptive-Path Aggregation Network structure is proposed to make features containing more information by adding a shortcut weighted by the Adaptively Spatial Feature Fusion (ASFF) module. The ASFF adaptively allocates the weights of features with different sizes to reduce the inconsistency of features between different levels during feature fusion to improve detection precision. Finally, the SCYLLA-IoU loss function is introduced to calculate the directional loss between the bounding box and the ground truth box to elevate the stability of the training. Experiments are executed with a self-constructed ASD-DET dataset and the public NEU-DET dataset. Results show that the mAP of FC-YOLO is improved by 3.1% and 2.7% compared to that of the original YOLOv7 on the ASD-DET dataset and the NEU-DET dataset. In addition, on the ASD-DET dataset and NEU-DET dataset, the mAP of FC-YOLO was higher than that of YOLOv8, RT-DETR by 1.4%, 1.6% and 2.2%, 3.8%, respectively. By which, it is shown that the proposed FC-YOLO algorithm is promising for the future automatic visual inspection of aircraft skin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助刘迎采纳,获得10
1秒前
3秒前
3秒前
5秒前
5秒前
Rhythm完成签到 ,获得积分10
5秒前
xhz完成签到 ,获得积分10
6秒前
小鲤鱼完成签到 ,获得积分10
6秒前
李健应助stellafreeman采纳,获得30
7秒前
小李子发布了新的文献求助10
7秒前
10秒前
木木林姐姐完成签到 ,获得积分10
11秒前
zc发布了新的文献求助10
11秒前
12秒前
13秒前
15秒前
Solitude完成签到,获得积分10
15秒前
Hello应助艾妮妮采纳,获得10
15秒前
科研通AI5应助开心的饼干采纳,获得10
15秒前
赘婿应助科研刘采纳,获得10
17秒前
yky发布了新的文献求助10
17秒前
mini昕完成签到,获得积分10
18秒前
evak完成签到,获得积分10
19秒前
123321完成签到 ,获得积分10
20秒前
霜之哀伤完成签到,获得积分10
22秒前
22秒前
认真的小懒虫完成签到,获得积分10
22秒前
科研通AI2S应助受伤的迎松采纳,获得10
27秒前
stellafreeman发布了新的文献求助30
28秒前
CipherSage应助rong采纳,获得10
32秒前
32秒前
zcj完成签到,获得积分10
33秒前
33秒前
科研通AI5应助xuan采纳,获得30
34秒前
北方晨光完成签到 ,获得积分10
35秒前
多肽专家完成签到 ,获得积分10
37秒前
yuyuyu完成签到,获得积分10
38秒前
ambernameswu发布了新的文献求助10
38秒前
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784590
求助须知:如何正确求助?哪些是违规求助? 3329680
关于积分的说明 10243282
捐赠科研通 3045037
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800431
科研通“疑难数据库(出版商)”最低求助积分说明 759391