A review on recent applications of machine learning in mechanical properties of composites

材料科学 复合材料
作者
Yi Liang,Xinyue Wei,Yongyue Peng,Xiaohan Wang,Xiaoting Niu
出处
期刊:Polymer Composites [Wiley]
被引量:2
标识
DOI:10.1002/pc.29082
摘要

Abstract Composites are undergoing extensive research and utilization due to their excellent mechanical properties, driven by human needs. Traditionally, the research methods in materials science predominantly rely on empirical theory or experimental trial and error approaches. However, the increased complexity of composite materials results in a greater intricacy in their mechanical behavior. Consequently, the utilization of traditional research methods may not achieve sufficient efficiency. Materials science is rapidly transitioning into a data‐driven era, with machine learning (ML) emerging as a potent tool to expedite materials development and enhance properties prediction. Significant advancements have been achieved in the application of ML to the study of composite mechanics. In this review article, we elucidate various ML methods employed in the construction of constitutive models for isotropic and anisotropic composites, and delve into the research on construction ML models that leverage input data derived from composite processes, structures, and environmental conditions to predict material mechanical properties. Additionally, we summarize recent noteworthy ML applications in composite design and optimization. Finally, possible prospective viewpoints are proposed for future development, with the aim of providing essential scientific guidance for advancing material science and technology through ML. Highlights Machine learning can address complexity in constitutive model of the anisotropic composites. Machine learning predicts mechanical properties of composites well by process and structure. Machine learning enhances efficiency in inverse design to optimize composites. Limitations, challenges, development trends of ML in composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
獭祭鱼发布了新的文献求助10
3秒前
研新发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
6秒前
歪歪吸发布了新的文献求助10
9秒前
9秒前
研新完成签到,获得积分10
10秒前
快点毕业发布了新的文献求助30
11秒前
张豪杰发布了新的文献求助10
12秒前
如意数据线完成签到 ,获得积分10
12秒前
dava举报求助违规成功
12秒前
Singularity举报求助违规成功
12秒前
12秒前
SleepyFuFu发布了新的文献求助10
13秒前
木木完成签到 ,获得积分10
14秒前
bbb发布了新的文献求助10
14秒前
15秒前
19秒前
科研通AI2S应助gfbh采纳,获得10
21秒前
21秒前
22秒前
任性的眼睛完成签到,获得积分10
23秒前
24秒前
Twinkle完成签到,获得积分10
24秒前
何洁发布了新的文献求助10
25秒前
25秒前
Young4399发布了新的文献求助10
26秒前
kaka发布了新的文献求助30
27秒前
sanker完成签到,获得积分10
28秒前
快点毕业完成签到,获得积分10
29秒前
科研通AI5应助bbb采纳,获得10
29秒前
两棵树完成签到,获得积分10
29秒前
Katherine完成签到,获得积分10
30秒前
gyf发布了新的文献求助10
30秒前
斯文的小旋风举报求助违规成功
35秒前
kingwill举报求助违规成功
35秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797671
求助须知:如何正确求助?哪些是违规求助? 3343117
关于积分的说明 10314740
捐赠科研通 3059860
什么是DOI,文献DOI怎么找? 1679112
邀请新用户注册赠送积分活动 806343
科研通“疑难数据库(出版商)”最低求助积分说明 763118