亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review on recent applications of machine learning in mechanical properties of composites

材料科学 复合材料
作者
Yi Liang,Xinyue Wei,Yongyue Peng,Xiaohan Wang,Xiao‐ting Niu
出处
期刊:Polymer Composites [Wiley]
被引量:11
标识
DOI:10.1002/pc.29082
摘要

Abstract Composites are undergoing extensive research and utilization due to their excellent mechanical properties, driven by human needs. Traditionally, the research methods in materials science predominantly rely on empirical theory or experimental trial and error approaches. However, the increased complexity of composite materials results in a greater intricacy in their mechanical behavior. Consequently, the utilization of traditional research methods may not achieve sufficient efficiency. Materials science is rapidly transitioning into a data‐driven era, with machine learning (ML) emerging as a potent tool to expedite materials development and enhance properties prediction. Significant advancements have been achieved in the application of ML to the study of composite mechanics. In this review article, we elucidate various ML methods employed in the construction of constitutive models for isotropic and anisotropic composites, and delve into the research on construction ML models that leverage input data derived from composite processes, structures, and environmental conditions to predict material mechanical properties. Additionally, we summarize recent noteworthy ML applications in composite design and optimization. Finally, possible prospective viewpoints are proposed for future development, with the aim of providing essential scientific guidance for advancing material science and technology through ML. Highlights Machine learning can address complexity in constitutive model of the anisotropic composites. Machine learning predicts mechanical properties of composites well by process and structure. Machine learning enhances efficiency in inverse design to optimize composites. Limitations, challenges, development trends of ML in composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Cloud完成签到,获得积分10
3秒前
阿烨完成签到,获得积分10
5秒前
liufan完成签到 ,获得积分10
8秒前
Cloud发布了新的文献求助10
8秒前
酷波er应助无私的问芙采纳,获得10
29秒前
量子星尘发布了新的文献求助10
31秒前
董羽佳完成签到,获得积分10
32秒前
李健应助nito采纳,获得10
33秒前
36秒前
沿途一天完成签到,获得积分10
42秒前
43秒前
nito完成签到,获得积分10
46秒前
nito发布了新的文献求助10
49秒前
胡茶茶完成签到 ,获得积分10
1分钟前
隐形曼青应助龙龙ff11_采纳,获得10
1分钟前
1分钟前
1分钟前
于乔发布了新的文献求助10
1分钟前
awrawsaf完成签到 ,获得积分10
1分钟前
清爽老九应助包子采纳,获得30
1分钟前
龙龙ff11_发布了新的文献求助10
1分钟前
老实的思松完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
林洁佳完成签到,获得积分10
1分钟前
林洁佳发布了新的文献求助10
1分钟前
龙龙ff11_完成签到,获得积分10
1分钟前
我是大兴完成签到,获得积分10
1分钟前
欢喜冰露关注了科研通微信公众号
1分钟前
脑洞疼应助于乔采纳,获得10
1分钟前
www发布了新的文献求助10
1分钟前
CodeCraft应助zz采纳,获得10
1分钟前
于乔完成签到,获得积分10
1分钟前
1分钟前
cccc发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4216151
求助须知:如何正确求助?哪些是违规求助? 3750323
关于积分的说明 11795800
捐赠科研通 3415924
什么是DOI,文献DOI怎么找? 1874769
邀请新用户注册赠送积分活动 928655
科研通“疑难数据库(出版商)”最低求助积分说明 837759