Radiomics parameters of epicardial adipose tissue predict mortality in acute pulmonary embolism

医学 队列 肺栓塞 特征(语言学) 排名(信息检索) 放射科 内科学 人工智能 计算机科学 语言学 哲学
作者
Alexey Surov,Silke Zimmermann,Mattes Hinnerichs,Hans‐Jonas Meyer,Anar Aghayev,Jan Borggrefe
出处
期刊:Respiratory Research [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12931-024-02977-x
摘要

Abstract Background Accurate prediction of short-term mortality in acute pulmonary embolism (APE) is very important. The aim of the present study was to analyze the prognostic role of radiomics values of epicardial adipose tissue (EAT) in APE. Methods Overall, 508 patients were included into the study, 209 female (42.1%), mean age, 64.7 ± 14.8 years. 4.6%and 12.4% died (7- and 30-day mortality, respectively). For external validation, a cohort of 186 patients was further analysed. 20.2% and 27.7% died (7- and 30-day mortality, respectively). CTPA was performed at admission for every patient before any previous treatment on multi-slice CT scanners. A trained radiologist, blinded to patient outcomes, semiautomatically segmented the EAT on a dedicated workstation using ImageJ software. Extraction of radiomic features was applied using the pyradiomics library. After correction for correlation among features and feature cleansing by random forest and feature ranking, we implemented feature signatures using 247 features of each patient. In total, 26 feature combinations with different feature class combinations were identified. Patients were randomly assigned to a training and a validation cohort with a ratio of 7:3. We characterized two models (30-day and 7-day mortality). The models incorporate a combination of 13 features of seven different image feature classes. Findings We fitted the characterized models to a validation cohort ( n = 169) in order to test accuracy of our models. We observed an AUC of 0.776 (CI 0.671–0.881) and an AUC of 0.724 (CI 0.628–0.820) for the prediction of 30-day mortality and 7-day mortality, respectively. The overall percentage of correct prediction in this regard was 88% and 79% in the validation cohorts. Lastly, the AUC in an independent external validation cohort was 0.721 (CI 0.633–0.808) and 0.750 (CI 0.657–0.842), respectively. Interpretation Radiomics parameters of EAT are strongly associated with mortality in patients with APE. Clinical trial number Not applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
刚子发布了新的文献求助10
3秒前
科研通AI6应助莫三颜采纳,获得10
4秒前
4秒前
5秒前
yu完成签到 ,获得积分10
6秒前
可爱的函函应助丁丁采纳,获得10
6秒前
欢呼的冰兰完成签到,获得积分10
7秒前
凌晨洋发布了新的文献求助10
7秒前
路由器完成签到,获得积分10
7秒前
00完成签到 ,获得积分10
8秒前
张三发布了新的文献求助10
9秒前
铁头哇发布了新的文献求助10
9秒前
10秒前
HY完成签到 ,获得积分10
10秒前
10秒前
11秒前
赵七七关注了科研通微信公众号
11秒前
helen李发布了新的文献求助10
12秒前
小蘑菇完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
bubu发布了新的文献求助10
15秒前
15秒前
16秒前
NexusExplorer应助ark861023采纳,获得10
16秒前
16秒前
共享精神应助悲凉的新筠采纳,获得10
17秒前
木头人完成签到,获得积分10
18秒前
18秒前
yhl发布了新的文献求助10
19秒前
19秒前
LQ完成签到,获得积分10
20秒前
小鬼1004完成签到,获得积分10
22秒前
胖虎妈完成签到,获得积分20
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5486398
求助须知:如何正确求助?哪些是违规求助? 4585947
关于积分的说明 14407291
捐赠科研通 4516420
什么是DOI,文献DOI怎么找? 2474776
邀请新用户注册赠送积分活动 1460706
关于科研通互助平台的介绍 1433801