Deep learning-based image analysis for filamentous and floc-forming bacteria in wastewater treatment

细菌 废水 污水处理 化学 微生物学 制浆造纸工业 生化工程 环境科学 生物 环境工程 工程类 遗传学
作者
Sama Alani,Hui Guo,Sheila Fyfe,Zebo Long,Sylvain Donnaz,Younggy Kim
出处
期刊:Journal of water process engineering [Elsevier BV]
卷期号:65: 105772-105772 被引量:3
标识
DOI:10.1016/j.jwpe.2024.105772
摘要

In municipal wastewater treatment, effective secondary clarification relies on the balance between floc-forming bacteria and filamentous bacteria. Consequently, comprehensive and real-time monitoring of this balance will enable reliable operation of biological wastewater treatment. This research presents an artificial intelligence (AI)-based approach for the classification of filamentous and floc-forming bacteria in microscopic images using deep learning. To provide ground truth labeling, an automated rule-based segmentation algorithm was developed using color and morphology criteria along with supplementary filtration steps to enhance the precision of filamentous and floc-forming bacteria identification. The segmentation algorithm demonstrated reliable detection and categorization of bacteria across varying background intensities and effectively recognized intricate microbial configurations. Subsequently, the supervised deep learning model was trained on the segmented images and constructed with an encoder/decoder architecture. Machine training with only 68 microscopic images demonstrated successful classification of the filamentous and floc-forming bacteria with a 97.8 % accuracy. In addition, qualitative evaluation demonstrated that the deep learning model could generalize machine understanding across diverse scenarios and discern misclassified filamentous bacteria accurately. The proposed model stands as a promising automated tool for real-time quantification of filamentous and floc-forming bacteria in bioreactors and clarifiers, offering the potential for reliable operation as well as immediate actions for sludge bulking and membrane fouling problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
南宫书芹完成签到,获得积分10
5秒前
共享精神应助douny采纳,获得10
6秒前
zwf发布了新的文献求助30
6秒前
玩是罪恶的完成签到,获得积分10
7秒前
8秒前
Su发布了新的文献求助10
9秒前
9秒前
14秒前
Ava应助Su采纳,获得10
14秒前
16秒前
刘延峰发布了新的文献求助10
18秒前
19秒前
Andrew发布了新的文献求助10
21秒前
酷酷海豚完成签到,获得积分10
21秒前
希望天下0贩的0应助高超采纳,获得10
23秒前
BIG川完成签到,获得积分10
23秒前
特牛啊啊应助Severan采纳,获得10
27秒前
zwf完成签到,获得积分20
29秒前
Michael完成签到,获得积分20
30秒前
科研通AI5应助时尚的闭月采纳,获得10
30秒前
31秒前
hanzhipad应助白凌风采纳,获得10
34秒前
34秒前
35秒前
37秒前
38秒前
薄荷花发布了新的文献求助10
38秒前
Annie发布了新的文献求助10
39秒前
啟晨完成签到,获得积分10
39秒前
张太岳发布了新的文献求助30
39秒前
40秒前
orixero应助闪点点采纳,获得30
42秒前
小狮子完成签到,获得积分10
43秒前
44秒前
英姑应助jyzxzr采纳,获得10
44秒前
偤萸发布了新的文献求助10
47秒前
49秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842830
求助须知:如何正确求助?哪些是违规求助? 3384827
关于积分的说明 10537714
捐赠科研通 3105396
什么是DOI,文献DOI怎么找? 1710290
邀请新用户注册赠送积分活动 823577
科研通“疑难数据库(出版商)”最低求助积分说明 774149