Developing a machine learning‐based instrument for subjective well‐being assessment on Weibo and its psychological significance: An evaluative and interpretive research

可靠性(半导体) 心理学 人工智能 机器学习 预测能力 桥(图论) 口译(哲学) 计算机科学 社会心理学 应用心理学 有效性 功率(物理) 心理测量学 发展心理学 医学 哲学 物理 认识论 量子力学 内科学 程序设计语言
作者
Nuo Han,Yeye Wen,Bowen Wang,Feng Huang,Xiaoqian Liu,Linyan Li,Tingshao Zhu
出处
期刊:Applied Psychology: Health and Well-being [Wiley]
卷期号:16 (4): 2246-2265
标识
DOI:10.1111/aphw.12590
摘要

Abstract Demystifying machine learning (ML) approaches through the synergy of psychology and artificial intelligence can achieve a balance between predictive and explanatory power in model development while enhancing rigor in validation and reporting standards. Accordingly, this study aimed to bridge this research gap by developing a subjective well‐being (SWB) prediction model on Weibo, serving as a psychological assessment instrument and explaining the model construction based on psychological knowledge. The model establishment involved the collection of SWB scores and posts from 1,427 valid Weibo users. Multiple machine learning algorithms were employed to train the model and fine‐tune its parameters. The optimal model was selected by comparing its criterion validity and split‐half reliability performance. Furthermore, SHAP values were calculated to rank the importance of features, which were then used for model interpretation. The criterion validity for the three dimensions of SWB ranged from 0.50 to 0.52 ( P < 0.001), and the split‐half reliability ranged from 0.94 to 0.96 ( P < 0.001). The identified relevant features were related to four main aspects: cultural values, emotions, morality, and time and space. This study expands the application scope of SWB‐related psychological theories from a data‐driven perspective and provides a theoretical reference for further well‐being prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助稻草熊采纳,获得10
2秒前
彭于晏应助zjl1112采纳,获得10
2秒前
dddsss发布了新的文献求助10
2秒前
3秒前
sunzhuxi发布了新的文献求助10
3秒前
小菜鸡完成签到 ,获得积分10
3秒前
淡淡梦容发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
Cola发布了新的文献求助10
6秒前
shi1207863831发布了新的文献求助10
7秒前
9秒前
Tonsil01发布了新的文献求助10
9秒前
vanshaw.vs发布了新的文献求助10
10秒前
小马甲应助ldjack采纳,获得10
11秒前
嘿嘿应助安心采纳,获得10
12秒前
12秒前
所所应助聪明的破茧采纳,获得10
12秒前
寻水的鱼发布了新的文献求助10
12秒前
14秒前
ZeKaWa应助怡轻肝采纳,获得10
14秒前
安安发布了新的文献求助10
14秒前
15秒前
15秒前
clock发布了新的文献求助10
15秒前
bin完成签到,获得积分10
16秒前
刘玉梅完成签到,获得积分10
16秒前
零零发布了新的文献求助10
17秒前
17秒前
在水一方应助拼搏冬卉采纳,获得20
18秒前
Owen应助黑猫采纳,获得10
19秒前
Owen应助秀儿采纳,获得10
19秒前
19秒前
20秒前
雪糕刺客完成签到,获得积分10
20秒前
20秒前
含蓄的若血完成签到,获得积分10
20秒前
水门发布了新的文献求助10
20秒前
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818877
求助须知:如何正确求助?哪些是违规求助? 3361969
关于积分的说明 10414777
捐赠科研通 3080278
什么是DOI,文献DOI怎么找? 1693919
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768329