降级(电信)
灵敏度(控制系统)
计算机科学
绝缘体上的硅
材料科学
光电子学
电信
工程类
电子工程
硅
作者
Mohammad K. Anvarifard,Ali A. Orouji
标识
DOI:10.1038/s41598-024-69383-7
摘要
For the first time, a new configuration of label-free junctionless semiconductor device is proposed to boost sensitivity in the identification of biomolecule specifies. Instead of creating the nanocavity inside the gate oxide, the nanocavity is created in the channel region which is very useful for the SOI junctionless technology based biodevice having a high current in all operating modes. For better control of the conduction mechanism, a hole trench is created under the channel region just inside the buried oxide. This will help to modulate the energy bands terminating in enhancing the sensing performance. Unlike the conventional biosensors needing a large-scale gate oxide thickness for trapping the biomolecules, the proposed biosensor can work for very low gate oxide thickness. The different biomolecules such as Biotin, Protein A, Bacteriophage T7, and Apomyoglobin have been utilized as targeted biomolecules for evaluating the sensitivity. Comparing the proposed biosensor with the conventional and other biosensors showed an enhanced sensing performance. Practical related issues during the process of sensing in terms of fill factor percentage, steric hindrance of biomolecules, and the charges of biomolecules have been focused in the recommended biodevice. All the results exhibited high superiority of performance of the suggested biodevice as compared to the conventional biosensor.
科研通智能强力驱动
Strongly Powered by AbleSci AI