Fast Multi-View Clustering Via Ensembles: Towards Scalability, Superiority, and Simplicity

计算机科学 聚类分析 可扩展性 人工智能 数据库
作者
Dong Huang,Chang‐Dong Wang,Jianhuang Lai
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (11): 11388-11402 被引量:61
标识
DOI:10.1109/tkde.2023.3236698
摘要

Despite significant progress, there remain three limitations to the previous multi-view clustering algorithms. First, they often suffer from high computational complexity, restricting their feasibility for large-scale datasets. Second, they typically fuse multi-view information via one-stage fusion, neglecting the possibilities in multi-stage fusions. Third, dataset-specific hyperparameter-tuning is frequently required, further undermining their practicability. In light of this, we propose a fast multi-view clustering via ensembles (FastMICE) approach. Particularly, the concept of random view groups is presented to capture the versatile view-wise relationships, through which the hybrid early-late fusion strategy is designed to enable efficient multi-stage fusions. With multiple views extended to many view groups, three levels of diversity (w.r.t. features, anchors, and neighbors, respectively) are jointly leveraged for constructing the view-sharing bipartite graphs in the early-stage fusion. Then, a set of diversified base clusterings for different view groups are obtained via fast graph partitioning, which are further formulated into a unified bipartite graph for final clustering in the late-stage fusion. Notably, FastMICE has almost linear time and space complexity, and is free of dataset-specific tuning. Experiments on 22 multi-view datasets demonstrate its advantages in scalability (for extremely large datasets), superiority (in clustering performance), and simplicity (to be applied) over the state-of-the-art. Code available: https://github.com/huangdonghere/FastMICE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanchen完成签到,获得积分10
刚刚
小二郎应助加油少年采纳,获得10
1秒前
泡泡茶壶o完成签到 ,获得积分10
1秒前
GAW完成签到,获得积分10
1秒前
平常以云完成签到 ,获得积分10
2秒前
2秒前
我不是大脚板完成签到,获得积分10
3秒前
yier完成签到,获得积分10
4秒前
4秒前
故意的小松鼠完成签到,获得积分10
5秒前
123完成签到,获得积分10
7秒前
韩祖完成签到 ,获得积分10
7秒前
木木完成签到,获得积分10
8秒前
热情的采枫完成签到,获得积分10
8秒前
天晴完成签到,获得积分10
9秒前
菠萝蜜发布了新的文献求助10
10秒前
吕嫣娆完成签到 ,获得积分10
11秒前
哈基米德应助科研草履虫采纳,获得20
11秒前
Syx_rcees完成签到,获得积分10
11秒前
woommoow完成签到,获得积分10
12秒前
鱼贝贝发布了新的文献求助10
12秒前
12秒前
KX2024完成签到,获得积分10
12秒前
老迟到的白猫完成签到 ,获得积分10
12秒前
一氧化二氢完成签到,获得积分10
12秒前
嘻嘻我完成签到,获得积分10
13秒前
零玖完成签到 ,获得积分10
13秒前
13秒前
星河完成签到,获得积分10
13秒前
14秒前
忘归完成签到,获得积分10
15秒前
清秀凡霜完成签到,获得积分10
15秒前
无花果应助好事成双采纳,获得10
17秒前
爆米花应助菠萝蜜采纳,获得10
19秒前
呆萌冰彤完成签到 ,获得积分10
19秒前
追尾的猫完成签到 ,获得积分10
19秒前
爱笑的含烟完成签到,获得积分10
20秒前
华煜祺完成签到,获得积分10
20秒前
21秒前
丁点完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079796
求助须知:如何正确求助?哪些是违规求助? 4297897
关于积分的说明 13389149
捐赠科研通 4121238
什么是DOI,文献DOI怎么找? 2257068
邀请新用户注册赠送积分活动 1261339
关于科研通互助平台的介绍 1195451