CAMR: cross-aligned multimodal representation learning for cancer survival prediction

模态(人机交互) 人工智能 计算机科学 代表(政治) 特征学习 模式 机器学习 子空间拓扑 深度学习 政治学 社会科学 政治 社会学 法学
作者
Xingqi Wu,Yi Shi,Minghui Wang,Ao Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (1) 被引量:9
标识
DOI:10.1093/bioinformatics/btad025
摘要

Accurately predicting cancer survival is crucial for helping clinicians to plan appropriate treatments, which largely improves the life quality of cancer patients and spares the related medical costs. Recent advances in survival prediction methods suggest that integrating complementary information from different modalities, e.g. histopathological images and genomic data, plays a key role in enhancing predictive performance. Despite promising results obtained by existing multimodal methods, the disparate and heterogeneous characteristics of multimodal data cause the so-called modality gap problem, which brings in dramatically diverse modality representations in feature space. Consequently, detrimental modality gaps make it difficult for comprehensive integration of multimodal information via representation learning and therefore pose a great challenge to further improvements of cancer survival prediction.To solve the above problems, we propose a novel method called cross-aligned multimodal representation learning (CAMR), which generates both modality-invariant and -specific representations for more accurate cancer survival prediction. Specifically, a cross-modality representation alignment learning network is introduced to reduce modality gaps by effectively learning modality-invariant representations in a common subspace, which is achieved by aligning the distributions of different modality representations through adversarial training. Besides, we adopt a cross-modality fusion module to fuse modality-invariant representations into a unified cross-modality representation for each patient. Meanwhile, CAMR learns modality-specific representations which complement modality-invariant representations and therefore provides a holistic view of the multimodal data for cancer survival prediction. Comprehensive experiment results demonstrate that CAMR can successfully narrow modality gaps and consistently yields better performance than other survival prediction methods using multimodal data.CAMR is freely available at https://github.com/wxq-ustc/CAMR.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Yuchaoo采纳,获得10
1秒前
1秒前
1秒前
挺好完成签到,获得积分10
1秒前
Lasse应助六水居士采纳,获得10
1秒前
2秒前
脑洞疼应助liuhua采纳,获得10
2秒前
可爱的函函应助绿色心情采纳,获得10
2秒前
3秒前
马婷完成签到,获得积分10
3秒前
哈哈哈完成签到,获得积分10
3秒前
3秒前
昨夜梦星河完成签到,获得积分10
3秒前
3秒前
Akim应助空山新雨采纳,获得10
4秒前
猫独秀完成签到,获得积分10
4秒前
4秒前
Tiamo发布了新的文献求助10
4秒前
胡勇发布了新的文献求助10
4秒前
4秒前
科研通AI5应助人福药业采纳,获得10
5秒前
棠真应助发发扶采纳,获得10
6秒前
aaaaa发布了新的文献求助10
6秒前
shea完成签到,获得积分10
7秒前
go完成签到,获得积分10
7秒前
飞飞关注了科研通微信公众号
7秒前
Zyan发布了新的文献求助10
7秒前
wegrvfd完成签到,获得积分10
7秒前
云海老发布了新的文献求助10
7秒前
7秒前
呢喃发布了新的文献求助20
8秒前
冷月芳华发布了新的文献求助10
8秒前
en发布了新的文献求助10
8秒前
8秒前
肖礼成完成签到,获得积分10
8秒前
hode发布了新的文献求助10
9秒前
vv发布了新的文献求助10
9秒前
10秒前
程锦完成签到,获得积分10
12秒前
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818180
求助须知:如何正确求助?哪些是违规求助? 3361331
关于积分的说明 10412348
捐赠科研通 3079520
什么是DOI,文献DOI怎么找? 1691267
邀请新用户注册赠送积分活动 814471
科研通“疑难数据库(出版商)”最低求助积分说明 768178