Random survival forest model for early prediction of Alzheimer’s disease conversion in early and late Mild cognitive impairment stages

随机森林 比例危险模型 神经影像学 认知 危险系数 认知障碍 生存分析 医学 疾病 决策树 计算机科学 内科学 人工智能 置信区间 精神科
作者
A. Saeed,Asim Waris,Ahmed Fuwad,Javaid Iqbal,Jawad Khan,Dokhyl AlQahtani,Syed Omer Gilani,Umer Hameed Shah
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (12): e0314725-e0314725
标识
DOI:10.1371/journal.pone.0314725
摘要

With a clinical trial failure rate of 99.6% for Alzheimer’s Disease (AD), early diagnosis is critical. Machine learning (ML) models have shown promising results in early AD prediction, with survival ML models outperforming typical classifiers by providing probabilities of disease progression over time. This study utilized various ML survival models to predict the time-to-conversion to AD for early (eMCI) and late (lMCI) Mild Cognitive Impairment stages, considering their different progression rates. ADNI data, consisting of 291 eMCI and 546 lMCI cases, was preprocessed to handle missing values and data imbalance. The models used included Random Survival Forest (RSF), Extra Survival Trees (XST), Gradient Boosting (GB), Survival Tree (ST), Cox-net, and Cox Proportional Hazard (CoxPH). We evaluated cognitive, cerebrospinal fluid (CSF) biomarkers, and neuroimaging modalities, both individually and combined, to identify the most influential features. Our results indicate that RSF outperformed traditional CoxPH and other ML models. For eMCI, RSF trained on multimodal data achieved a C-Index of 0.90 and an IBS of 0.10. For lMCI, the C-Index was 0.82 and the IBS was 0.16. Cognitive tests showed a statistically significant improvement over other modalities, underscoring their reliability in early prediction. Furthermore, RSF-generated individual survival curves from baseline data facilitate clinical decision-making, aiding clinicians in developing personalized treatment plans and implementing preventive measures to slow or prevent AD progression in prodromal stages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cmd发布了新的文献求助10
1秒前
ycwfs发布了新的文献求助10
2秒前
沐风发布了新的文献求助10
3秒前
dennisysz发布了新的文献求助10
3秒前
4秒前
嘟嘟嘟嘟完成签到 ,获得积分10
5秒前
8秒前
Ryan发布了新的文献求助10
9秒前
小李老博应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
Ankher应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
小李老博应助科研通管家采纳,获得10
10秒前
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
chd发布了新的文献求助10
13秒前
上官若男应助cmd采纳,获得10
13秒前
14秒前
谭先生发布了新的文献求助50
17秒前
小屁孩完成签到,获得积分10
18秒前
18秒前
HAHA完成签到,获得积分10
19秒前
19秒前
wls完成签到,获得积分10
19秒前
kdjm688发布了新的文献求助10
20秒前
20秒前
wf0806发布了新的文献求助10
21秒前
搜集达人应助科研小菜鸡采纳,获得10
21秒前
我要吃饭完成签到 ,获得积分10
24秒前
所所应助橙子橙子橙子采纳,获得10
25秒前
25秒前
丘比特应助奋斗瑶采纳,获得10
26秒前
共享精神应助奋斗瑶采纳,获得10
26秒前
小丑鱼儿完成签到 ,获得积分10
26秒前
kkkkk完成签到,获得积分10
29秒前
sunny完成签到,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777414
求助须知:如何正确求助?哪些是违规求助? 3322767
关于积分的说明 10211585
捐赠科研通 3038128
什么是DOI,文献DOI怎么找? 1667131
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103