Machine learning-informed liquid-liquid phase separation for personalized breast cancer treatment assessment

乳腺癌 分离(统计) 医学 相(物质) 个性化医疗 肿瘤科 癌症 医学物理学 人工智能 内科学 计算机科学 生物信息学 机器学习 化学 生物 有机化学
作者
Tao Wang,Shu Wang,Zhuolin Li,Jie Xie,Huan Chen,Jing Hou
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15: 1485123-1485123 被引量:3
标识
DOI:10.3389/fimmu.2024.1485123
摘要

Background Breast cancer, characterized by its heterogeneity, is a leading cause of mortality among women. The study aims to develop a Machine Learning-Derived Liquid-Liquid Phase Separation (MDLS) model to enhance the prognostic accuracy and personalized treatment strategies for breast cancer patients. Methods The study employed ten machine learning algorithms to construct 108 algorithm combinations for the MDLS model. The robustness of the model was evaluated using multi-omics and single-cell data across 14 breast cancer cohorts, involving 9,723 patients. Genetic mutation, copy number alterations, and single-cell RNA sequencing were analyzed to understand the molecular mechanisms and predictive capabilities of the MDLS model. Immunotherapy targets were predicted by evaluating immune cell infiltration and immune checkpoint expression. Chemotherapy targets were identified through correlation analysis and drug responsiveness prediction. Results The MDLS model demonstrated superior prognostic power, with a mean C-index of 0.649, outperforming 69 published signatures across ten cohorts. High-MDLS patients exhibited higher tumor mutation burden and distinct genomic alterations, including significant gene amplifications and deletions. Single-cell analysis revealed higher MDLS activity in tumor-aneuploid cells and identified key regulatory factors involved in MDLS progression. Cell-cell communication analysis indicated stronger interactions in high-MDLS groups, and immunotherapy response evaluation showed better outcomes for low-MDLS patients. Conclusion The MDLS model offers a robust and precise tool for predicting breast cancer prognosis and tailoring personalized treatment strategies. Its integration of multi-omics and machine learning highlights its potential clinical applications, particularly in improving the effectiveness of immunotherapy and identifying therapeutic targets for high-MDLS patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
0517完成签到,获得积分10
刚刚
xuanxuan发布了新的文献求助10
刚刚
刚刚
侠客岛发布了新的文献求助10
1秒前
1秒前
HuiJN完成签到 ,获得积分10
2秒前
任成艳完成签到,获得积分10
2秒前
药学完成签到 ,获得积分10
3秒前
蔡从安发布了新的文献求助10
3秒前
正正应助wodetaiyangLLL采纳,获得10
5秒前
sxl发布了新的文献求助10
5秒前
思源应助tx采纳,获得10
6秒前
甜兮完成签到,获得积分20
6秒前
7秒前
wwww完成签到,获得积分10
7秒前
博闻完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
哲哲完成签到,获得积分10
10秒前
正正应助wodetaiyangLLL采纳,获得10
11秒前
乐乐应助pzhxsy采纳,获得10
11秒前
冷傲之玉完成签到,获得积分20
11秒前
lakiliu完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
Yunni完成签到,获得积分10
11秒前
zzz完成签到,获得积分20
12秒前
12秒前
12秒前
12秒前
勤奋小懒虫完成签到,获得积分10
13秒前
lakiliu发布了新的文献求助10
13秒前
冷傲之玉发布了新的文献求助10
14秒前
zzz发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653156
求助须知:如何正确求助?哪些是违规求助? 4789346
关于积分的说明 15062969
捐赠科研通 4811762
什么是DOI,文献DOI怎么找? 2574063
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488445