Rose Plant Leaf Disease Recognition Using Machine Learning Methodologies

机器学习 人工智能 计算机科学
作者
E Reddy,Sai Durga Satturi,M. Harshini,Subhani Shaik
出处
期刊:Asian Journal of Research in Computer Science [Sciencedomain International]
卷期号:17 (11): 65-72
标识
DOI:10.9734/ajrcos/2024/v17i11519
摘要

The most popular flowers in the world are roses, not only cheer people up but also support livelihoods. Diseases, however, can harm these priceless flowers' health and negatively affect both their quality and the growers' livelihoods. The increased occurrence of ailments in rose plants poses a severe danger to the ornamental flower industry and agricultural productivity. In this paper, we describe a novel deep learning-based method for the automated diagnosis of leaf diseases in rose plants. A big dataset containing images of both healthy and damaged rose leaves was carefully picked to illustrate different disease types and stages. To analyze and identify the visual characteristics that correspond to various illnesses, we used a Convolutional Neural Network architecture, Support Vector Machine, and K-Nearest Neighbors architectures specifically intended for picture classification tasks. We address the interpretability and explainability of the model's predictions in addition to performance indicators, offering insights into the decision-making process. This work addresses a fundamental requirement for effective and long-lasting disease management in rose cultivation by bridging the gap between deep learning and plant pathology. CNNs are often the preferred choice due to their ability to automatically learn relevant features from raw pixel values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Maomao完成签到,获得积分10
3秒前
4秒前
严十三发布了新的文献求助10
5秒前
周而复始@发布了新的文献求助10
5秒前
6秒前
yancy发布了新的文献求助10
6秒前
鸽子的迷信完成签到,获得积分10
6秒前
shiyijin完成签到,获得积分10
8秒前
希望天下0贩的0应助sdl采纳,获得10
9秒前
万邦德完成签到,获得积分10
9秒前
南初完成签到,获得积分10
10秒前
10秒前
11秒前
研友_VZG7GZ应助Alex采纳,获得10
11秒前
11秒前
leslie完成签到,获得积分10
14秒前
大大发布了新的文献求助10
15秒前
16秒前
无花果应助清雨采纳,获得10
17秒前
苏蔚完成签到,获得积分10
18秒前
19秒前
乐乐应助Tao采纳,获得10
20秒前
橘子完成签到,获得积分10
20秒前
周而复始@完成签到,获得积分10
21秒前
就这发布了新的文献求助10
22秒前
乔心发布了新的文献求助10
23秒前
23秒前
橘子发布了新的文献求助10
25秒前
Yoel发布了新的文献求助10
25秒前
ding应助zero采纳,获得10
26秒前
leicaixia完成签到 ,获得积分10
29秒前
sdl发布了新的文献求助10
30秒前
luvebiubiu完成签到 ,获得积分10
32秒前
32秒前
wjn完成签到,获得积分10
34秒前
可爱的函函应助橘子采纳,获得10
35秒前
清雨发布了新的文献求助10
36秒前
37秒前
seannnnnnn完成签到,获得积分10
37秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838438
求助须知:如何正确求助?哪些是违规求助? 3380761
关于积分的说明 10515728
捐赠科研通 3100371
什么是DOI,文献DOI怎么找? 1707456
邀请新用户注册赠送积分活动 821753
科研通“疑难数据库(出版商)”最低求助积分说明 772930