亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Classification Using YOLOv11 and Hybrid YOLO11n-MobileNet Models: A Fire Classes Case Study

环境科学 计算机科学
作者
Eman H. Alkhammash
出处
期刊:Fire [MDPI AG]
卷期号:8 (1): 17-17 被引量:2
标识
DOI:10.3390/fire8010017
摘要

Fires are classified into five types: A, B, C, D, and F/K, according to the components involved in combustion. Recognizing fire classes is critical, since each kind demands a unique suppression approach. Proper fire classification helps to decrease the risk to both life and property. The fuel type is used to determine the fire class, so that the appropriate extinguishing agent can be selected. This study takes advantage of recent advances in deep learning, employing YOLOv11 variants (YOLO11n, YOLO11s, YOLO11m, YOLO11l, and YOLO11x) to classify fires according to their class, assisting in the selection of the correct fire extinguishers for effective fire control. Moreover, a hybrid model that combines YOLO11n and MobileNetV2 is developed for multi-class classification. The dataset used in this study is a combination of five existing public datasets with additional manually annotated images, to create a new dataset covering the five fire classes, which was then validated by a firefighting specialist. The hybrid model exhibits good performance across all classes, achieving particularly high precision, recall, and F1 scores. Its superior performance is especially reflected in the macro average, where it surpasses both YOLO11n and YOLO11m, making it an effective model for datasets with imbalanced classes, such as fire classes. The YOLO11 variants achieved high performance across all classes. YOLO11s exhibited high precision and recall for Class A and Class F, achieving an F1 score of 0.98 for Class A. YOLO11m also performed well, demonstrating strong results in Class A and No Fire with an F1 score of 0.98%. YOLO11n achieved 97% accuracy and excelled in No Fire, while also delivering good recall for Class A. YOLO11l showed excellent recall in challenging classes like Class F, attaining an F1 score of 0.97. YOLO11x, although slightly lower in overall accuracy of 96%, still maintained strong performance in Class A and No Fire, with F1 scores of 0.97 and 0.98, respectively. A similar study employing MobileNetV2 is compared to the hybrid model, and the results show that the hybrid model achieves higher accuracy. Overall, the results demonstrate the high accuracy of the hybrid model, highlighting the potential of the hybrid models and YOLO11n, YOLO11m, YOLO11s, and YOLO11l models for better classification of fire classes. We also discussed the potential of deep learning models, along with their limitations and challenges, particularly with limited datasets in the context of the classification of fire classes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nikuisi完成签到,获得积分10
15秒前
15秒前
19秒前
30秒前
yishuihan发布了新的文献求助10
37秒前
yishuihan完成签到,获得积分10
50秒前
1分钟前
1分钟前
1分钟前
锦城纯契完成签到 ,获得积分10
1分钟前
捉迷藏完成签到,获得积分0
1分钟前
简爱完成签到 ,获得积分10
2分钟前
满意的伊完成签到,获得积分10
2分钟前
3分钟前
哎呀哎呀呀完成签到,获得积分10
3分钟前
严珍珍完成签到 ,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
我是老大应助活泼的煎饼采纳,获得10
3分钟前
3分钟前
画船听雨眠完成签到,获得积分10
4分钟前
4分钟前
Picopy发布了新的文献求助10
4分钟前
乐观海云完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助50
5分钟前
fabius0351完成签到 ,获得积分10
6分钟前
6分钟前
专一的忆寒完成签到,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
8分钟前
CipherSage应助DING采纳,获得10
8分钟前
故酒举报量子星尘求助涉嫌违规
8分钟前
9分钟前
9分钟前
9分钟前
DING发布了新的文献求助10
9分钟前
9分钟前
binfo完成签到,获得积分0
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5161717
求助须知:如何正确求助?哪些是违规求助? 4355100
关于积分的说明 13559252
捐赠科研通 4199865
什么是DOI,文献DOI怎么找? 2303355
邀请新用户注册赠送积分活动 1303333
关于科研通互助平台的介绍 1249311