Physical Informed-Inspired Deep Reinforcement Learning Based Bi-Level Programming for Microgrid Scheduling

强化学习 微电网 计算机科学 调度(生产过程) 人工智能 数学优化 控制(管理) 数学
作者
Yang Li,Jiankai Gao,Yuanzheng Li,Chen Chen,Sen Li,Mohammad Shahidehpour,Zhe Chen
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tia.2024.3522486
摘要

To coordinate the interests of operator and users in a microgrid under complex and changeable operating conditions, this paper proposes a microgrid scheduling model considering the thermal flexibility of thermostatically controlled loads and demand response by leveraging physical informedinspired deep reinforcement learning (DRL) based bi-level programming.To overcome the non-convex limitations of karushkuhn-tucker (KKT)-based methods, a novel optimization solution method based on DRL theory is proposed to handle the bilevel programming through alternate iterations between levels.Specifically, by combining a DRL algorithm named asynchronous advantage actor-critic (A3C) and automated machine learningprioritized experience replay (AutoML-PER) strategy to improve the generalization performance of A3C to address the above problems, an improved A3C algorithm, called AutoML-PER-A3C, is designed to solve the upper-level problem; while the DOCPLEX optimizer is adopted to address the lower-level problem.In this solution process, AutoML is used to automatically optimize hyperparameters and PER improves learning efficiency and quality by extracting the most valuable samples.The test results demonstrate that the presented approach manages to reconcile the interests between multiple stakeholders in MG by fully exploiting various flexibility resources.Furthermore, in terms of economic viability and computational efficiency, the proposal vastly exceeds other advanced reinforcement learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默飞荷完成签到,获得积分10
1秒前
Nn发布了新的文献求助10
1秒前
飞飞飞完成签到,获得积分10
4秒前
在水一方应助KKDDBB采纳,获得10
6秒前
czc完成签到,获得积分10
8秒前
qianshu发布了新的文献求助10
10秒前
大模型应助骑驴找马采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
脆脆完成签到,获得积分10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得20
13秒前
13秒前
Ava应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
13秒前
Zl应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
15秒前
要减肥冰菱完成签到,获得积分10
16秒前
T123456789完成签到,获得积分10
17秒前
20秒前
英姑应助聪慧夜柳采纳,获得30
20秒前
子铭发布了新的文献求助10
22秒前
23秒前
23秒前
25秒前
25秒前
xiezhuochun发布了新的文献求助10
27秒前
Senier77完成签到,获得积分10
28秒前
qianshu发布了新的文献求助10
28秒前
29秒前
JC完成签到,获得积分10
30秒前
田様应助陈佳祥采纳,获得10
31秒前
哈哈一笑完成签到,获得积分10
31秒前
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964668
求助须知:如何正确求助?哪些是违规求助? 3510187
关于积分的说明 11152017
捐赠科研通 3244291
什么是DOI,文献DOI怎么找? 1792365
邀请新用户注册赠送积分活动 873801
科研通“疑难数据库(出版商)”最低求助积分说明 803957