Online multi-hypergraph fusion learning for cross-subject emotion recognition

超图 计算机科学 主题(文档) 人工智能 融合 情绪识别 自然语言处理 模式识别(心理学) 机器学习 万维网 数学 语言学 组合数学 哲学
作者
Tongjie Pan,Yalan Ye,Yangwuyong Zhang,Kunshu Xiao,Hecheng Cai
出处
期刊:Information Fusion [Elsevier]
卷期号:108: 102338-102338 被引量:8
标识
DOI:10.1016/j.inffus.2024.102338
摘要

Multimodal fusion for emotion recognition has received increasing attention from researchers because of its ability to effectively leverage multimodal complementary information. However, there are two main challenges lead to performance degradation of existing emotion recognition models, which limits the practical use of existing models. One is that multimodal signals are difficult to fuse effectively to respond to the complexity of emotions. The other is that the individual variability and non-stationarity of physiological signals lead to poor performance of the model on new subjects. In particular, existing methods will not work well when faced with emotion recognition of new subjects in online scenarios. In this paper, we propose a novel online multi-hypergraph fusion learning method (OnMHF) to effectively fuse multimodal information and to reduce the difference between training data and test data for online cross-subject emotion recognition. Specifically, in a training phase, a multi-hypergraph fusion is proposed to fuse multimodal physiological signals to effectively obtain emotion-aware information via leveraging multimodal complementary information and high-order correlations among multimodal signals. In an online recognizing phase, an online multi-hypergraph learning is designed to learn online multimodal information from online multimodal data by updating hypergraph structure. As a result, the proposed method can be more effective for emotion recognition of target subjects when target data arrive in an online manner. Experimental results have demonstrated that the proposed method outperforms the baselines and compared state-of-the-art methods in online emotion recognition tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ying应助小西采纳,获得10
1秒前
科研通AI6应助Dominos采纳,获得10
1秒前
1秒前
充电宝应助妞妞采纳,获得20
1秒前
1秒前
小二郎应助高高的依秋采纳,获得10
1秒前
2秒前
Lynne发布了新的文献求助10
2秒前
乐乐应助入江采纳,获得10
2秒前
xiaotailan完成签到,获得积分10
3秒前
3秒前
子车茗应助学不懂数学采纳,获得30
3秒前
3秒前
panghu完成签到,获得积分10
4秒前
5秒前
zhangxasq完成签到,获得积分20
5秒前
5秒前
一韩之信完成签到,获得积分10
5秒前
领导范儿应助Arjun采纳,获得10
6秒前
完美世界应助CHENDQ采纳,获得10
7秒前
xsy完成签到,获得积分10
7秒前
yyyyyyy发布了新的文献求助10
7秒前
7秒前
fendy完成签到,获得积分0
7秒前
8秒前
zhangxasq发布了新的文献求助10
8秒前
铭仔完成签到 ,获得积分10
8秒前
贪玩草丛发布了新的文献求助10
8秒前
旋转门发布了新的文献求助10
8秒前
ccc1429536273发布了新的文献求助10
8秒前
9秒前
10秒前
Luisa发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
yisoo发布了新的文献求助10
10秒前
子车茗应助学不懂数学采纳,获得30
11秒前
英俊的铭应助可爱邓邓采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5361404
求助须知:如何正确求助?哪些是违规求助? 4491627
关于积分的说明 13983260
捐赠科研通 4394439
什么是DOI,文献DOI怎么找? 2413970
邀请新用户注册赠送积分活动 1406810
关于科研通互助平台的介绍 1381360