Upgrading the Density Functional Theory with Machine Learning for the Fast Prediction of Polyaromatic Reactivity at Bimetallic Catalysts

双金属片 密度泛函理论 催化作用 反应性(心理学) 背景(考古学) 吸附 化学 分子 计算化学 计算机科学 计算 物理化学 算法 有机化学 医学 替代医学 病理 古生物学 生物
作者
Jérémie Zaffran,Meiyuan Jiao,Raphaël Wischert,Stéphane Streiff,Sébastien Paul
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (12): 5084-5092
标识
DOI:10.1021/acs.jpcc.4c00461
摘要

Polyaromatic molecules are compounds of major importance in chemistry. However, simulating their reactivity at the solid catalyst surface with density functional theory (DFT) is very challenging. Indeed, such species require large slab models for their adsorption, hence resulting in a considerable number of atoms and thus significant computational time. In the recent context of increasing use in machine learning (ML), it is clear that such tools are of first interest to speed-up DFT calculations. Considering anthraquinone (AQ) hydrogenation on the surface of metal-doped Pd-based supported catalysts as a model reaction and focusing on the main reaction products, we propose here a method aiming at predicting the energy of the determining states from several descriptors related to a small molecular fragment, benzoquinone (BZQ) adsorbed at different surfaces. We were able to identify two distinct models, both performing with a high efficiency and based on different kinds of descriptors. While the first one involving a single thermodynamic descriptor is more accurate, the second one including a combination of electronic and geometric parameters is still relevant to predict reliable qualitative trends. Interestingly, we showed that simple linear regression tools can compete with other complex ML techniques, providing very accurate models with remarkable stability. Such an approach can be applied to easily assess the effective barriers of formation of several species on catalysts presenting different bimetallic compositions, hence enabling the screening of the catalytic activity and selectivity of various surfaces in a record time. While heavy DFT computations are generally required to optimize each intermediate and transition state, our strategy relies on a single adsorbate relaxation, hence, resulting in a tremendous gain of time. Therefore, our method is crucial for the accelerated computational design of solid catalysts and may have applications in various fields of the chemical industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
msk完成签到 ,获得积分10
刚刚
2秒前
珥多完成签到 ,获得积分10
2秒前
上官若男应助gemini0615采纳,获得10
3秒前
Tzzl0226完成签到,获得积分10
3秒前
独特的沛凝完成签到,获得积分10
4秒前
可爱的函函应助yshog采纳,获得10
5秒前
5秒前
二二完成签到 ,获得积分10
6秒前
6秒前
尹尹尹发布了新的文献求助10
6秒前
ys6完成签到,获得积分10
6秒前
酷波er应助fancyking采纳,获得10
6秒前
田様应助独家双层汉堡采纳,获得10
7秒前
科研通AI5应助Andorchid采纳,获得10
8秒前
sunyt完成签到,获得积分10
10秒前
hyf完成签到,获得积分10
10秒前
gemini0615发布了新的文献求助10
10秒前
溢出的爱像雨完成签到,获得积分20
12秒前
文献啊文献完成签到,获得积分10
13秒前
13秒前
14秒前
curtainai完成签到,获得积分10
15秒前
15秒前
张先生完成签到 ,获得积分10
15秒前
everyone_woo完成签到,获得积分10
16秒前
yshog完成签到,获得积分10
17秒前
小六子123发布了新的文献求助10
17秒前
Owen应助wbr采纳,获得10
17秒前
21秒前
卷大喵发布了新的文献求助10
21秒前
Kkk完成签到 ,获得积分10
23秒前
hyf关注了科研通微信公众号
24秒前
墨月白应助xbchen采纳,获得10
24秒前
gemini0615发布了新的文献求助10
24秒前
25秒前
coster完成签到,获得积分10
26秒前
了0完成签到 ,获得积分10
26秒前
云淡风轻发布了新的文献求助10
27秒前
芳芳子呀完成签到,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781113
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227650
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734