Analyzing drought legacy effects on streamflow with machine learning

水流 环境科学 计算机科学 气候学 地理 地质学 地图学 流域
作者
Anne J. Hoek van Dijke,O Sungmin,Xin Yu,René Orth
标识
DOI:10.5194/egusphere-egu24-13019
摘要

Prolonged periods of below-average precipitation decrease streamflow, deplete soil moisture and groundwater reservoirs, and affect vegetation health. These effects can last for several years even after precipitation returns to normal. This way, droughts can decrease or increase streamflow for post-drought years. These drought legacy effects were found in a few local studies, but they have not yet been studied at global scale. Here, we study drought legacy effects on streamflow in > 1100 catchments distributed across the globe using Long-Short Term Memory (LSTM) models. This type of data-driven model is very suitable for time-series predictions with long-term dependencies, and LSTMs are therefore frequently used to model streamflow. We train our LSTM model for each catchment to predict streamflow based on meteorological forcing data. For training, we include all available data between 1980 – 2019, but we exclude the drought legacy years (the two years after each drought year). We assume that our models do therefore not know about the drought legacy effects. After training we use the LSTM models to predict streamflow for drought legacy years. We then define the legacy effects as the difference between model errors (the difference between the predicted and measured streamflow) for drought legacy years, in comparison to the model errors for normal years. Using this methodology, we find catchments that show no, positive, or negative drought legacy effects. In the next step we will study if these legacy effects vary along climate or land cover gradients. And we additionally include satellite data of vegetation greenness, evaporation, and terrestrial water storage in the LSTM training to study two hypotheses: 1) we find negative drought legacy effects due to a depletion of groundwater, and 2) we find positive drought legacy effects, because vegetation mortality leads to decreased evaporation after the drought.Our study offers a new perspective on understanding drought legacy effects on streamflow using observational data and demonstrates the usefulness of machine learning in uncovering complex drought impacts. 

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱撒娇的蝴蝶完成签到 ,获得积分10
1秒前
她的城完成签到,获得积分0
2秒前
祁灵枫完成签到,获得积分10
2秒前
Wsyyy完成签到 ,获得积分10
3秒前
hy完成签到 ,获得积分10
3秒前
zhangsan完成签到,获得积分10
4秒前
行云流水完成签到,获得积分10
5秒前
wanci应助震动的鞋垫采纳,获得10
6秒前
小白完成签到 ,获得积分10
7秒前
cn完成签到 ,获得积分10
7秒前
xmqaq完成签到,获得积分10
9秒前
Manana完成签到 ,获得积分10
9秒前
跳跃馒头完成签到 ,获得积分10
9秒前
sora完成签到,获得积分10
14秒前
jixuchance完成签到,获得积分10
16秒前
淡然以柳完成签到 ,获得积分10
17秒前
小二发布了新的文献求助30
18秒前
keyun完成签到,获得积分10
18秒前
Yuki完成签到 ,获得积分10
19秒前
MoodMeed完成签到,获得积分10
21秒前
盛意完成签到,获得积分10
22秒前
执念完成签到,获得积分10
22秒前
Chikit完成签到,获得积分0
25秒前
Jasper应助Ji采纳,获得10
26秒前
科研通AI2S应助予秋采纳,获得10
27秒前
票子完成签到 ,获得积分10
28秒前
28秒前
28秒前
矜持完成签到 ,获得积分10
29秒前
无情的聋五完成签到 ,获得积分10
29秒前
流星雨完成签到 ,获得积分10
30秒前
时代炸蛋完成签到 ,获得积分10
30秒前
LiLi完成签到 ,获得积分10
31秒前
小二完成签到,获得积分10
31秒前
姜雨发布了新的文献求助30
31秒前
郝老头完成签到,获得积分0
37秒前
SY完成签到,获得积分10
40秒前
湘崽丫完成签到 ,获得积分10
41秒前
凹ring芝完成签到 ,获得积分10
42秒前
深情安青应助科研通管家采纳,获得10
44秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347617
求助须知:如何正确求助?哪些是违规求助? 4481841
关于积分的说明 13948177
捐赠科研通 4380227
什么是DOI,文献DOI怎么找? 2406843
邀请新用户注册赠送积分活动 1399398
关于科研通互助平台的介绍 1372558