FMR-YOLO: Infrared Ship Rotating Target Detection Based on Synthetic Fog and Multiscale Weighted Feature Fusion

计算机科学 融合 传感器融合 人工智能 红外线的 特征(语言学) 计算机视觉 特征提取 目标检测 模式识别(心理学) 遥感 哲学 语言学 物理 光学 地质学
作者
Huimin Deng,Ying Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-17 被引量:17
标识
DOI:10.1109/tim.2023.3336445
摘要

Infrared ship detection has important application value for ensuring navigation safety and real-time monitoring of the sea surface. It is also of great significance in marine intelligent defense and has become an important research branch in the field of computer vision. Affected by the weather at sea and the limitations of infrared cameras, infrared ship images often have the problems of small targets being submerged by noise and low information entropy, which bring great challenges to infrared ship detection. In this article, an infrared ship rotating target detection algorithm FMR-YOLO based on synthetic fog and multiscale weighted fusion is proposed. Our algorithm first corrects the noisy labels of the original dataset due to misclassification and constructs an infrared ship dataset (ISD) containing different concentrations of haze through an improved dark channel prior (DCP) algorithm. Second, in order to avoid the loss of small target features and information as the network deepens, a weighted feature pyramid network (FPN) based on dilated convolution (DWFPN) is proposed. DWFPN weights the fusion of features at different levels based on the attention mechanism to achieve high-quality information interaction. Finally, in view of the large aspect ratio and arbitrary direction of the ship target, rotation detection is introduced to obtain more accurate detection boxes and ship navigation direction information. The experimental results show that compared with the standard YOLOv7, the improved algorithm achieves a mean average accuracy (mAP) of 92.7%, and the recall rate and precision rate are improved by 2.3% and 3%, respectively. Our code and R-ISD dataset are available at: https://github.com/denghuimin1/FMR-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助zhiwei采纳,获得10
刚刚
SYLH应助LaTeXer采纳,获得10
1秒前
灵巧的寄真关注了科研通微信公众号
2秒前
上官枫发布了新的文献求助10
4秒前
饱满的棒棒糖完成签到 ,获得积分10
5秒前
开放映冬发布了新的文献求助10
5秒前
杨怂怂完成签到 ,获得积分10
6秒前
微信研友完成签到,获得积分10
7秒前
9秒前
oo完成签到,获得积分10
9秒前
李天真发布了新的文献求助10
10秒前
慧海拾穗完成签到 ,获得积分10
10秒前
ADcal完成签到 ,获得积分10
10秒前
ttracc完成签到 ,获得积分10
11秒前
倩倩完成签到 ,获得积分10
12秒前
12秒前
YY发布了新的文献求助10
14秒前
duckspy完成签到 ,获得积分10
14秒前
杨怡诗完成签到,获得积分20
14秒前
16秒前
阡陌完成签到,获得积分10
17秒前
刘果发布了新的文献求助10
20秒前
21秒前
zhang完成签到,获得积分10
22秒前
SYLH应助szmsnail采纳,获得10
22秒前
25秒前
wangye发布了新的文献求助10
26秒前
wqqq发布了新的文献求助30
26秒前
Lucas应助小糊涂神采纳,获得10
27秒前
goldNAN完成签到 ,获得积分10
30秒前
科研通AI2S应助董姗姗采纳,获得10
30秒前
虚心的阿松完成签到,获得积分10
32秒前
33秒前
桂花酒酿完成签到,获得积分10
34秒前
37秒前
Wu完成签到 ,获得积分10
37秒前
38秒前
通通通完成签到,获得积分10
38秒前
斯文败类应助Echoheart采纳,获得10
40秒前
科研通AI5应助大海之滨采纳,获得10
41秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801096
求助须知:如何正确求助?哪些是违规求助? 3346745
关于积分的说明 10330078
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807509
科研通“疑难数据库(出版商)”最低求助积分说明 763726