Image deblurring method based on self-attention and residual wavelet transform

去模糊 人工智能 计算机科学 图像复原 模式识别(心理学) 残余物 平滑的 小波 特征(语言学) 计算机视觉 小波变换 图像融合 图像(数学) 图像处理 算法 语言学 哲学
作者
Bing Zhang,Jing Sun,Fuming Sun,Fasheng Wang,Bing Zhu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 123005-123005 被引量:16
标识
DOI:10.1016/j.eswa.2023.123005
摘要

The restoration technology of non-uniform blurred images is a challenging open topic. Most of the existing algorithms fail to effectively fuse multi-scale feature extraction with a self-attention mechanism, and also ignore the potential contribution of image frequency domain information to image restoration. Frequency domain features play an important role in restoring high-quality images and ignoring this property often leads to over-smoothing of the restoration results. In response to these problems, an image deblurring method based on self-attention and residual wavelet transform is proposed in this paper. Based on a single U-Net network, the multi-scale feature cross-fusion strategy and self-attention mechanism are combined to make the network pay more attention to different degrees of blurred regions so that relatively robust blurred features can be extracted for image deblurring. Meanwhile, considering the important role of frequency domain features for image restoration, the wavelet transform is embedded into the depth residual network to convert spatial domain features to wavelet domain, and the sharp details such as edge contours of blurred features are restored by making full use of the texture structure information possessed by high-frequency sub-bands, which further improves the image restoration performance. Experimental results of quantitative and qualitative comparison with other state-of-the-art methods show that the image deblurring effect of the proposed network performs favorably in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics. The codes and models are available at https://github.com/BingY998/MRDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅快的胡萝卜完成签到,获得积分10
2秒前
关尔匕禾页完成签到,获得积分10
3秒前
3秒前
4秒前
糖宝发布了新的文献求助10
5秒前
充电宝应助一点不晓得啦采纳,获得10
5秒前
5秒前
安欢完成签到,获得积分10
6秒前
6秒前
英俊的铭应助hahhahahh采纳,获得10
6秒前
6秒前
韦涔完成签到,获得积分0
7秒前
7秒前
开心的安南完成签到,获得积分20
8秒前
摆烂包菜完成签到,获得积分10
9秒前
安欢发布了新的文献求助10
10秒前
爱吃大米发布了新的文献求助10
10秒前
orixero应助春风不语采纳,获得10
11秒前
健康的代真完成签到 ,获得积分10
11秒前
HXM123完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
科研小猪完成签到 ,获得积分10
13秒前
13秒前
Owen应助清秀黄蜂采纳,获得10
15秒前
16秒前
蓝色小星星星星星完成签到 ,获得积分10
16秒前
柏林寒冬应助翁雁丝采纳,获得10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
666发布了新的文献求助10
19秒前
19秒前
科研通AI5应助momo采纳,获得10
19秒前
19秒前
21秒前
21秒前
科研通AI5应助无情的绮彤采纳,获得10
21秒前
耙耙柑发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5060533
求助须知:如何正确求助?哪些是违规求助? 4284746
关于积分的说明 13352610
捐赠科研通 4102586
什么是DOI,文献DOI怎么找? 2246170
邀请新用户注册赠送积分活动 1251909
关于科研通互助平台的介绍 1182637