Spatial–Temporal Dynamic Graph Convolutional Network With Interactive Learning for Traffic Forecasting

计算机科学 图形 人工智能 深度学习 机器学习 理论计算机科学
作者
Aoyu Liu,Yaying Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 7645-7660 被引量:17
标识
DOI:10.1109/tits.2024.3362145
摘要

Accurate traffic forecasting is essential in urban traffic management, route planning, and flow detection. Recent advances in spatial-temporal models have markedly improved the modeling of intricate spatial-temporal correlations for traffic forecasting. Unfortunately, most previous studies have encountered challenges in effectively modeling spatial-temporal correlations across various perceptual perspectives and have neglected the interactive learning between spatial and temporal correlations. Additionally, constrained by spatial heterogeneity, most studies fail to consider distinct spatial-temporal patterns of each node. To overcome these limitations, we propose a Spatial-Temporal Interactive Dynamic Graph Convolutional Network (STIDGCN) for traffic forecasting. Specifically, we propose an interactive learning framework composed of spatial and temporal modules for downsampling traffic data. This framework aims to capture spatial and temporal correlations by adopting a perception perspective from the global to the local level and facilitating their mutual utilization with positive feedback. In the spatial module, we design a dynamic graph convolutional network based on graph construction methods. The network is designed to leverage a traffic pattern bank considering spatial-temporal heterogeneity as a query to reconstruct a data-driven dynamic graph structure. The reconstructed graph structure can reveal dynamic associations between nodes in the traffic network. Extensive experiments on eight real-world traffic datasets demonstrate that STIDGCN outperforms the state-of-the-art baseline while balancing computational costs. The source codes are available at https://github.com/LiuAoyu1998/STIDGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋时晏完成签到,获得积分0
1秒前
感动的念双完成签到,获得积分10
1秒前
陈陈陈完成签到 ,获得积分10
1秒前
2秒前
哈哈悦发布了新的文献求助10
3秒前
小周完成签到 ,获得积分10
4秒前
我桽完成签到 ,获得积分10
7秒前
wsh发布了新的文献求助10
8秒前
Jeffery完成签到,获得积分10
9秒前
zcl完成签到,获得积分10
9秒前
丘比特应助午休采纳,获得30
9秒前
成就嚓茶完成签到,获得积分10
9秒前
wanci应助Gong采纳,获得10
9秒前
LOVER完成签到 ,获得积分10
11秒前
邝边边完成签到,获得积分10
12秒前
华仔应助成就嚓茶采纳,获得10
13秒前
龙1完成签到,获得积分10
14秒前
nancy吴完成签到 ,获得积分10
15秒前
wsh完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
爆米花应助nancy采纳,获得10
24秒前
michelmeis完成签到,获得积分10
25秒前
LWJ完成签到,获得积分10
26秒前
27秒前
27秒前
可玩性完成签到 ,获得积分10
28秒前
Lea发布了新的文献求助10
28秒前
温梓昊发布了新的文献求助10
28秒前
Ava应助fash采纳,获得10
30秒前
Gong发布了新的文献求助10
32秒前
Imogen完成签到,获得积分10
34秒前
落红禹03完成签到 ,获得积分10
35秒前
Ken酱完成签到,获得积分10
41秒前
香蕉初瑶完成签到,获得积分10
43秒前
46秒前
飘逸问薇完成签到 ,获得积分10
46秒前
正直的小猫咪完成签到,获得积分10
47秒前
积极问晴完成签到,获得积分10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779565
求助须知:如何正确求助?哪些是违规求助? 3325025
关于积分的说明 10221059
捐赠科研通 3040157
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522