Development and validation of a stacking ensemble model for death prediction in the Chinese Longitudinal Healthy Longevity Survey (CLHLS)

医学 逻辑回归 接收机工作特性 Boosting(机器学习) 梯度升压 范畴变量 人口学 回归分析 老年学 回归 统计 机器学习 内科学 随机森林 数学 计算机科学 社会学
作者
Muqi Xing,Yunfeng Zhao,Zihan Li,Lingzhi Zhang,Qi Yu,Wenhui Zhou,Rong Huang,Xiaozhen Lv,Yanan Ma,Wenyuan Li
出处
期刊:Maturitas [Elsevier BV]
卷期号:182: 107919-107919 被引量:2
标识
DOI:10.1016/j.maturitas.2024.107919
摘要

This study aimed to develop and validate a mortality risk prediction model for older people based on the Chinese Longitudinal Healthy Longevity Survey using the stacking ensemble strategy.A total of 12,769 participants aged 65 or more at baseline were included. Ensemble machine learning models were applied to develop a mortality prediction model. We selected three base learners, including logistic regression, eXtreme Gradient Boosting, and Categorical + Boosting, and used logistic regression as the meta-learner. The primary outcome was five-year survival. Variable importance was evaluated by the SHapley Additive exPlanations method.The mean age at baseline was 88, and 57.8 % of participants were women. The CatBoost model performed the best among the three base learners, the area under the receiver operating characteristics curve (AUC) reached 0.8469 (95%CI: 0.8345-0.8593), and the stacking ensemble model further improved the discrimination ability (AUC = 0.8486, 95%CI: 0.8367-0.8612, P = 0.046). Conventional logistic regression had comparable performance (AUC = 0.8470, 95 % CI: 0.8346-0.8595). Older age, higher scores for self-care activities of daily living, being male, higher objective physical performance capacity scores, not undertaking housework, and lower scores on the Mini-Mental State Examination contributed to higher risk.We successfully constructed and validated a few death risk prediction models for a Chinese population of older adults. While the stacking ensemble approach had the best prediction performance, the improvement over conventional logistic regression was insubstantial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
呜呼啦呼发布了新的文献求助10
2秒前
彧辰完成签到 ,获得积分10
2秒前
爱吃鸡蛋发布了新的文献求助10
3秒前
深情安青应助黙宇循光采纳,获得10
6秒前
帅哥发布了新的文献求助10
8秒前
9秒前
yanyimeng完成签到,获得积分10
10秒前
英姑应助卡卡东采纳,获得10
10秒前
琳雨完成签到,获得积分10
11秒前
yy完成签到 ,获得积分10
14秒前
14秒前
乐乐应助Yacon采纳,获得10
14秒前
leafarc发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
机智翠梅发布了新的文献求助10
17秒前
科研通AI5应助bwx采纳,获得30
18秒前
仁者无惧完成签到 ,获得积分10
19秒前
帅哥完成签到,获得积分20
20秒前
21秒前
hob发布了新的文献求助10
21秒前
研友_VZG7GZ应助拼搏的飞薇采纳,获得10
21秒前
黙宇循光发布了新的文献求助10
21秒前
一口啵啵完成签到 ,获得积分10
23秒前
24秒前
ableyy完成签到,获得积分10
25秒前
wang123完成签到,获得积分10
25秒前
荷包蛋完成签到,获得积分10
25秒前
xzy998应助墨墨采纳,获得10
26秒前
zhaoyang发布了新的文献求助10
27秒前
wangxiaoyating完成签到,获得积分10
27秒前
小白完成签到,获得积分10
28秒前
后来应助小不采纳,获得10
28秒前
28秒前
wang123发布了新的文献求助10
29秒前
松19完成签到,获得积分10
30秒前
30秒前
在水一方应助满意尔芙采纳,获得10
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803522
求助须知:如何正确求助?哪些是违规求助? 3348433
关于积分的说明 10338484
捐赠科研通 3064478
什么是DOI,文献DOI怎么找? 1682612
邀请新用户注册赠送积分活动 808364
科研通“疑难数据库(出版商)”最低求助积分说明 764038