Match Normalization: Learning-Based Point Cloud Registration for 6D Object Pose Estimation in the Real World

点云 规范化(社会学) 计算机科学 人工智能 姿势 计算机视觉 对象(语法) 云计算 机器学习 人类学 操作系统 社会学
作者
Zheng Dang,L Wang,Yu Guo,Mathieu Salzmann
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (6): 4489-4503 被引量:2
标识
DOI:10.1109/tpami.2024.3355198
摘要

In this work, we tackle the task of estimating the 6D pose of an object from point cloud data. While recent learning-based approaches have shown remarkable success on synthetic datasets, we have observed them to fail in the presence of real-world data. We investigate the root causes of these failures and identify two main challenges: The sensitivity of the widely-used SVD-based loss function to the range of rotation between the two point clouds, and the difference in feature distributions between the source and target point clouds. We address the first challenge by introducing a directly supervised loss function that does not utilize the SVD operation. To tackle the second, we introduce a new normalization strategy, Match Normalization. Our two contributions are general and can be applied to many existing learning-based 3D object registration frameworks, which we illustrate by implementing them in two of them, DCP and IDAM. Our experiments on the real-scene TUD-L [1], LINEMOD [2] and Occluded-LINEMOD [3] datasets evidence the benefits of our strategies. They allow for the first-time learning-based 3D object registration methods to achieve meaningful results on real-world data. We therefore expect them to be key to the future developments of point cloud registration methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yoo完成签到,获得积分10
刚刚
刚刚
Jouleken完成签到,获得积分10
1秒前
堡一吸完成签到,获得积分10
1秒前
SciGPT应助李健采纳,获得10
2秒前
2秒前
虚幻的夜天完成签到 ,获得积分10
3秒前
3秒前
3秒前
缪连虎完成签到,获得积分10
3秒前
4秒前
JamesPei应助震动的雅柔采纳,获得10
4秒前
晶生完成签到,获得积分10
5秒前
张力发布了新的文献求助10
6秒前
6秒前
6秒前
科目三应助Ashley采纳,获得10
6秒前
Wier9527完成签到,获得积分20
7秒前
陈JY发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
丰丰扫心完成签到,获得积分20
8秒前
李健应助hgc采纳,获得10
8秒前
斯文败类应助yyyyyyy采纳,获得10
8秒前
8秒前
nhh发布了新的文献求助10
9秒前
端庄毛巾完成签到,获得积分10
9秒前
9秒前
zzt关注了科研通微信公众号
9秒前
11秒前
11秒前
13秒前
13秒前
13秒前
cc发布了新的文献求助10
13秒前
14秒前
jiangchunxia发布了新的文献求助10
14秒前
14秒前
道衍先一完成签到,获得积分10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804892
求助须知:如何正确求助?哪些是违规求助? 3349972
关于积分的说明 10346579
捐赠科研通 3065797
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808810
科研通“疑难数据库(出版商)”最低求助积分说明 764978