Hierarchical and Dynamic Graph Attention Network for Drug-Disease Association Prediction

计算机科学 机制(生物学) 中心性 图形 节点(物理) 数据挖掘 人工智能 机器学习 理论计算机科学 数学 结构工程 认识论 组合数学 工程类 哲学
作者
Huang Shu-han,Minhui Wang,Xiao Zheng,Jiajia Chen,Chang Tang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2416-2427 被引量:19
标识
DOI:10.1109/jbhi.2024.3363080
摘要

In the realm of biomedicine, the prediction of associations between drugs and diseases holds significant importance. Yet, conventional wet lab experiments often fall short of meeting the stringent demands for prediction accuracy and efficiency. Many prior studies have predominantly focused on drug and disease similarities to predict drug-disease associations, but overlooking the crucial interactions between drugs and diseases that are essential for enhancing prediction accuracy. Hence, in this paper, a resilient and effective model named Hierarchical and Dynamic Graph Attention Network (HDGAT) has been proposed to predict drug-disease associations. Firstly, it establishes a heterogeneous graph by leveraging the interplay of drug and disease similarities and associations. Subsequently, it harnesses the capabilities of graph convolutional networks and bidirectional long short-term memory networks (Bi-LSTM) to aggregate node-level information within the heterogeneous graph comprehensively. Furthermore, it incorporates a hierarchical attention mechanism between convolutional layers and a dynamic attention mechanism between nodes to learn embeddings for drugs and diseases. The hierarchical attention mechanism assigns varying weights to embeddings learned from different convolutional layers, and the dynamic attention mechanism efficiently prioritizes inter-node information by allocating each node with varying rankings of attention coefficients for neighbour nodes. Moreover, it employs residual connections to alleviate the over-smoothing issue in graph convolution operations. The latent drug-disease associations are quantified through the fusion of these embeddings ultimately. By conducting 5-fold cross-validation, HDGAT's performance surpasses the performance of existing state-of-the-art models across various evaluation metrics, which substantiates the exceptional efficacy of HDGAT in predicting drug-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助刘喜宇采纳,获得10
刚刚
刚刚
小王发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
wanci应助爪人猫采纳,获得10
3秒前
ding应助FAN采纳,获得10
4秒前
春风细雨发布了新的文献求助10
4秒前
霸气南珍发布了新的文献求助10
4秒前
5秒前
脑洞疼应助菠萝采纳,获得10
5秒前
泡芙发布了新的文献求助10
6秒前
6秒前
英姑应助刘喜宇采纳,获得10
6秒前
6秒前
yang发布了新的文献求助10
7秒前
快乐星球完成签到,获得积分10
7秒前
传奇3应助uniny采纳,获得10
8秒前
Anony发布了新的文献求助10
8秒前
噔噔蹬发布了新的文献求助10
9秒前
京墨襦完成签到 ,获得积分10
9秒前
10秒前
10秒前
my发布了新的文献求助10
11秒前
脑洞疼应助Jeff_Lin采纳,获得10
11秒前
11秒前
石头完成签到,获得积分10
11秒前
12秒前
12秒前
可爱的函函应助刘喜宇采纳,获得10
12秒前
海绵宝宝完成签到,获得积分10
12秒前
桐桐应助爪人猫采纳,获得30
13秒前
大模型应助zqs采纳,获得10
13秒前
高高刺猬发布了新的文献求助10
14秒前
qianzi完成签到 ,获得积分10
14秒前
15秒前
ep_bhw发布了新的文献求助10
15秒前
CipherSage应助zxx采纳,获得10
15秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343389
求助须知:如何正确求助?哪些是违规求助? 4479059
关于积分的说明 13941390
捐赠科研通 4376069
什么是DOI,文献DOI怎么找? 2404428
邀请新用户注册赠送积分活动 1396950
关于科研通互助平台的介绍 1369288