Hierarchical and Dynamic Graph Attention Network for Drug-Disease Association Prediction

计算机科学 机制(生物学) 中心性 图形 节点(物理) 数据挖掘 人工智能 机器学习 理论计算机科学 认识论 结构工程 数学 哲学 组合数学 工程类
作者
Huang Shu-han,Minhui Wang,Xiao Zheng,Jiajia Chen,Chang Tang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2416-2427 被引量:8
标识
DOI:10.1109/jbhi.2024.3363080
摘要

In the realm of biomedicine, the prediction of associations between drugs and diseases holds significant importance. Yet, conventional wet lab experiments often fall short of meeting the stringent demands for prediction accuracy and efficiency. Many prior studies have predominantly focused on drug and disease similarities to predict drug-disease associations, but overlooking the crucial interactions between drugs and diseases that are essential for enhancing prediction accuracy. Hence, in this paper, a resilient and effective model named Hierarchical and Dynamic Graph Attention Network (HDGAT) has been proposed to predict drug-disease associations. Firstly, it establishes a heterogeneous graph by leveraging the interplay of drug and disease similarities and associations. Subsequently, it harnesses the capabilities of graph convolutional networks and bidirectional long short-term memory networks (Bi-LSTM) to aggregate node-level information within the heterogeneous graph comprehensively. Furthermore, it incorporates a hierarchical attention mechanism between convolutional layers and a dynamic attention mechanism between nodes to learn embeddings for drugs and diseases. The hierarchical attention mechanism assigns varying weights to embeddings learned from different convolutional layers, and the dynamic attention mechanism efficiently prioritizes inter-node information by allocating each node with varying rankings of attention coefficients for neighbour nodes. Moreover, it employs residual connections to alleviate the over-smoothing issue in graph convolution operations. The latent drug-disease associations are quantified through the fusion of these embeddings ultimately. By conducting 5-fold cross-validation, HDGAT's performance surpasses the performance of existing state-of-the-art models across various evaluation metrics, which substantiates the exceptional efficacy of HDGAT in predicting drug-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助无私的振家采纳,获得10
1秒前
3秒前
12发布了新的文献求助10
3秒前
woreaixuexi完成签到,获得积分10
4秒前
开放的黑猫完成签到,获得积分10
5秒前
FashionBoy应助猪猪hero采纳,获得10
5秒前
科研通AI5应助teng采纳,获得10
5秒前
accept发布了新的文献求助10
5秒前
上官若男应助叶子采纳,获得10
8秒前
无花果应助科研通管家采纳,获得30
9秒前
9秒前
大个应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
Akim应助科研通管家采纳,获得10
10秒前
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
只爱吃肠粉完成签到,获得积分10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
小宋应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得20
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
11秒前
RUI1128完成签到,获得积分10
11秒前
云在青天水在瓶完成签到,获得积分20
11秒前
11秒前
大个应助忧伤的宝马采纳,获得10
12秒前
azzoei完成签到,获得积分10
13秒前
别看我只是一只羊完成签到,获得积分10
13秒前
alin完成签到 ,获得积分10
13秒前
15秒前
17秒前
小鹅发布了新的文献求助10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795026
求助须知:如何正确求助?哪些是违规求助? 3339955
关于积分的说明 10298247
捐赠科研通 3056550
什么是DOI,文献DOI怎么找? 1677052
邀请新用户注册赠送积分活动 805118
科研通“疑难数据库(出版商)”最低求助积分说明 762333