LCFNets: Compensation Strategy for Real-Time Semantic Segmentation of Autonomous Driving

补偿(心理学) 计算机科学 分割 保险丝(电气) 棱锥(几何) 人工智能 像素 语义学(计算机科学) 图层(电子) 编码(集合论) 计算机视觉 建筑 模式识别(心理学) 集合(抽象数据类型) 心理学 工程类 程序设计语言 视觉艺术 精神分析 艺术 有机化学 化学 物理 光学 电气工程
作者
Lu Yang,Yiwen Bai,Fenglei Ren,Chongke Bi,Ronghui Zhang
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 4715-4729 被引量:7
标识
DOI:10.1109/tiv.2024.3363830
摘要

Semantic segmentation is an important research topic in the environment perception of intelligent vehicles. Many semantic segmentation networks based on bilateral architecture have been proven effective. However, semantic segmentation networks based on this architecture has the risk of pixel classification errors and small objects being overwhelmed. In this paper, we solve the problem by proposing a novel three-branch architecture network called LCFNets. Compared to existing bilateral architecture, LCFNets introduce compensation branch for the first time to preserve the features of original images. Through two efficient modules, Lightweight Detail Guidance Fusion Module (L-DGF) and Lightweight Semantic Guidance Fusion Module (L-SGF), detail and semantic branches are allowed to selectively extract features from this branch. To balance the three-branch features and guide them to fuse effectively, a novel aggregation layer is designed. Depth-wise Convolution Pyramid Pooling module (DCPP) and Total Guidance Fusion Module (TGF) enable the aggregation layer to extract the global receptive field and realize multi-branch aggregation with fewer calculation complexity. Extensive experiments on Cityscapes and CamVid datasets have shown that our family of LCFNets provide a better trade-off between speed and accuracy. With the full resolution input and no ImageNet pre-training, LCFNet-slim achieves 76.86% mIoU at 114.36 FPS and LCFNet achieves 77.96% mIoU at 92.37 FPS on Cityscapes. On the other hand, LCFNet-super achieves 79.10% mIoU at 47.46 FPS. Source code can be found from the: https://github.com/yiwen-bai/LCFNets .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
八宝粥完成签到,获得积分10
刚刚
WANG发布了新的文献求助10
刚刚
冰魂应助科研通管家采纳,获得10
刚刚
冰魂应助科研通管家采纳,获得10
刚刚
刚刚
完美世界应助科研通管家采纳,获得10
1秒前
十三应助科研通管家采纳,获得10
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
zzzwwss应助科研通管家采纳,获得10
1秒前
冰魂应助科研通管家采纳,获得10
2秒前
Gauss应助科研通管家采纳,获得30
2秒前
Cxyyyl应助科研通管家采纳,获得10
2秒前
冰魂应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
zho应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
花香漪发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
alice完成签到,获得积分10
4秒前
5秒前
唐妮完成签到,获得积分10
5秒前
5秒前
小蘑菇应助研究生采纳,获得10
8秒前
LiuMeng发布了新的文献求助10
8秒前
ljhhaoasia完成签到,获得积分10
8秒前
8秒前
打野完成签到,获得积分10
9秒前
chenmingjuan发布了新的文献求助10
10秒前
10秒前
11秒前
战战完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814553
求助须知:如何正确求助?哪些是违规求助? 3358709
关于积分的说明 10397030
捐赠科研通 3076053
什么是DOI,文献DOI怎么找? 1689681
邀请新用户注册赠送积分活动 813195
科研通“疑难数据库(出版商)”最低求助积分说明 767514