Enhancing safety of construction workers in Korea: an integrated text mining and machine learning framework for predicting accident types

机器学习 人工智能 计算机科学 朴素贝叶斯分类器 特征选择 随机森林 决策树 班级(哲学) 支持向量机 任务(项目管理) 数据挖掘 重采样 工程类 系统工程
作者
Joon Woo Yoo,Junsung Park,Heejun Park
出处
期刊:International Journal of Injury Control and Safety Promotion [Taylor & Francis]
卷期号:31 (2): 203-215 被引量:2
标识
DOI:10.1080/17457300.2023.2300424
摘要

Construction workers face a high risk of various occupational accidents, many of which can result in fatalities. This study aims to develop a prediction model for nine prevalent types of construction accidents, utilizing construction tasks, activities, and tools/materials as input features, through the application of machine learning-based multi-class classification algorithms. 152,867 construction accident summary reports, composed of both structured (construction task, construction activity, accident type) and unstructured data (tools/materials) were used for the study. The study employed several data processing techniques, including keyword extraction through text mining, Boruta feature selection, and SMOTE data resampling enhance model accuracy. Three performance metrics (Multi-class area under the receiver operating characteristic curve (MAUC), Multi-class Matthews Correlation Coefficient (MMCC), Geometric-mean (G-mean)) were used to compare the predictive performance of four machine learning algorithms, including Decision tree, Random forest, Naïve bayes, and XGBoost. Of the four algorithms, XGBoost showed the highest performance in predicting accident type (MAUC: 0.8603, MMCC: 0.3523, G-mean: 0.5009). Furthermore, a Shapley additive explanation (SHAP) analysis was conducted to visualize feature importance. The findings of this study make a valuable contribution to improving construction safety by presenting a prediction model for accident types derived from real-world big data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
linlang发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
不倦应助Star1983采纳,获得10
4秒前
4秒前
漓汐发布了新的文献求助10
6秒前
朱云发布了新的文献求助10
6秒前
i7发布了新的文献求助10
7秒前
天润佳苑发布了新的文献求助10
7秒前
lizhiqian2024发布了新的文献求助10
8秒前
李伟峰发布了新的文献求助10
8秒前
9秒前
聪慧航空完成签到,获得积分10
10秒前
yan发布了新的文献求助10
10秒前
完美世界应助EOFG0PW采纳,获得10
10秒前
11秒前
11秒前
12秒前
13秒前
科研通AI5应助狗蛋采纳,获得30
14秒前
天润佳苑完成签到,获得积分10
15秒前
薇薇早睡早起完成签到 ,获得积分10
15秒前
tuanzi发布了新的文献求助10
15秒前
夏夜黎梦发布了新的文献求助50
16秒前
Jasper应助郑蒸日上采纳,获得10
18秒前
消炎药完成签到,获得积分10
19秒前
19秒前
linlang完成签到,获得积分10
19秒前
JIO发布了新的文献求助10
19秒前
23秒前
JIO完成签到,获得积分10
23秒前
23秒前
希望天下0贩的0应助Aaaa采纳,获得10
24秒前
24秒前
积极的安青应助冷静雨筠采纳,获得10
26秒前
科研通AI5应助侦察兵采纳,获得10
26秒前
肖恩完成签到,获得积分10
26秒前
鲤鱼奇异果完成签到,获得积分10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791034
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276743
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675100
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761066