A novel method for predicting shallow hydrocarbon accumulation based on source-fault-sand (S-F-Sd) evaluation and ensemble neural network (ENN)

人工神经网络 断层(地质) 海底管道 石油工程 地质学 人工智能 计算机科学 算法 岩土工程 地震学
作者
Fuwei Wang,Dongxia Chen,Meijun Li,Zhangxin Chen,Qiaochu Wang,Mengya Jiang,Lanxi Rong,Yuqi Wang,Sha Li,Khawaja Hasnain Iltaf,Renzeng Wanma,Chen Liu
出处
期刊:Applied Energy [Elsevier]
卷期号:359: 122684-122684 被引量:4
标识
DOI:10.1016/j.apenergy.2024.122684
摘要

Shallow hydrocarbon accumulation (SHA) and predrilling volume prediction are important components of offshore oil and gas exploration. However, SHA prediction is complex and involves geological and technical uncertainties. Despite advances in available technology, reliable and convenient methods for predicting SHA are urgently needed by oil companies to avoid costly drilling mistakes. This study proposes a novel method for SHA prediction by combining source–fault–sand (S-F-Sd) evaluation and ensemble neural network (ENN) algorithms. First, twelve main controlling factors affecting SHA, which predominantly included geological parameters related to source rocks (S), fault zones (F) and sandstone reservoirs (Sd), were screened and quantified. Second, the six principal components obtained after the dimensionality reduction of the main control factors were selected as the model inputs. Then, using the BP neural network (BPNN), bagged neural network ensemble (Bagged-NNE) and boosted neural network ensemble (Boosted-NNE) algorithms, three different SHA prediction models with hydrocarbon column height (HCH) as the output were constructed. These models were applied to the K gasfield in the Xihu Depression, East China Sea Basin, to evaluate and optimize the model performance. Finally, the variable importance and the possible uncertainties in SHA prediction were discussed. The results show that the Boosted-NNE model is superior to the Bagged-NNE and BPNN models in SHA prediction. Moreover, the geological reserves of sandstone reservoirs calculated using the predicted HCH are close to the existing evaluation, which proves the effectiveness of the model output. In terms of variable importance, the synthetic parameters F1, F2, F5 and F4 obtained after dimensionality reduction are the four top principal components contributing to the model output. Under single-factor control, the HCH is positively correlated with the hydrocarbon expulsion rate, shale gouge ratio, sandstone thickness, porosity and permeability, but the relationship between the HCH and other controlling factors tends to be complicated. In addition, the model accuracy is affected by the uncertainties arising from the quantification and screening of the main controlling factors, as well as the dataset size and the machine learning algorithm selection. This contribution provides a reliable method for SHA prediction and corresponding predrilling volume evaluation, which can help avoid costly drilling mistakes and advance intelligent exploration techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Uniibooy发布了新的文献求助10
1秒前
九思发布了新的文献求助10
1秒前
儒雅致远发布了新的文献求助10
2秒前
2秒前
斯耐欧发布了新的文献求助20
4秒前
5秒前
6秒前
忐忑的舞蹈完成签到 ,获得积分10
8秒前
9秒前
小鼠星球发布了新的文献求助30
9秒前
刘丽梅发布了新的文献求助10
10秒前
dungaway发布了新的文献求助10
10秒前
Dr_Zhu完成签到,获得积分10
12秒前
meihui完成签到 ,获得积分10
12秒前
12秒前
12秒前
852应助冷酷的柜门采纳,获得10
15秒前
汉堡包应助Felixsun采纳,获得10
15秒前
wanci应助藏鸟采纳,获得10
16秒前
16秒前
16秒前
h123发布了新的文献求助30
17秒前
17秒前
深情安青应助九思采纳,获得10
19秒前
糊涂的冰菱完成签到,获得积分10
20秒前
花花123发布了新的文献求助10
20秒前
完美世界应助阔达摩托采纳,获得10
21秒前
22秒前
22秒前
小小发布了新的文献求助10
22秒前
forever发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
WW发布了新的文献求助10
23秒前
24秒前
26秒前
毛毛完成签到 ,获得积分10
27秒前
默默毛豆发布了新的文献求助10
27秒前
沉醉夜色发布了新的文献求助10
27秒前
万能图书馆应助吃猫的鱼采纳,获得10
29秒前
852应助h123采纳,获得10
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454169
求助须知:如何正确求助?哪些是违规求助? 4561592
关于积分的说明 14282986
捐赠科研通 4485543
什么是DOI,文献DOI怎么找? 2456809
邀请新用户注册赠送积分活动 1447428
关于科研通互助平台的介绍 1422808