Deep learning‐based association analysis of root image data and cucumber yield

生物 苗木 根系 播种 农学 作物 作物产量 发芽 产量(工程) 园艺 适应性 生态学 冶金 材料科学
作者
Cuifang Zhu,Hongjun Yu,Tao Lü,Yang Li,Weijie Jiang,Qiang Li
出处
期刊:Plant Journal [Wiley]
卷期号:118 (3): 696-716
标识
DOI:10.1111/tpj.16627
摘要

SUMMARY The root system is important for the absorption of water and nutrients by plants. Cultivating and selecting a root system architecture (RSA) with good adaptability and ultrahigh productivity have become the primary goals of agricultural improvement. Exploring the correlation between the RSA and crop yield is important for cultivating crop varieties with high‐stress resistance and productivity. In this study, 277 cucumber varieties were collected for root system image analysis and yield using germination plates and greenhouse cultivation. Deep learning tools were used to train ResNet50 and U‐Net models for image classification and segmentation of seedlings and to perform quality inspection and productivity prediction of cucumber seedling root system images. The results showed that U‐Net can automatically extract cucumber root systems with high quality (F1_score ≥ 0.95), and the trained ResNet50 can predict cucumber yield grade through seedling root system image, with the highest F1_score reaching 0.86 using 10‐day‐old seedlings. The root angle had the strongest correlation with yield, and the shallow‐ and steep‐angle frequencies had significant positive and negative correlations with yield, respectively. RSA and nutrient absorption jointly affected the production capacity of cucumber plants. The germination plate planting method and automated root system segmentation model used in this study are convenient for high‐throughput phenotypic (HTP) research on root systems. Moreover, using seedling root system images to predict yield grade provides a new method for rapidly breeding high‐yield RSA in crops such as cucumbers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Rec发布了新的文献求助10
4秒前
zz发布了新的文献求助10
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
8秒前
Rec完成签到 ,获得积分10
9秒前
雷仪清完成签到 ,获得积分10
10秒前
10秒前
14秒前
Lucas应助zz采纳,获得10
16秒前
香蕉觅云应助孤独的帅着采纳,获得10
19秒前
笨笨芯应助燕子采纳,获得30
23秒前
25秒前
somous完成签到,获得积分10
26秒前
26秒前
28秒前
包容的剑完成签到 ,获得积分10
28秒前
30秒前
junyang发布了新的文献求助10
31秒前
kydd发布了新的文献求助10
32秒前
32秒前
失眠天亦应助Yue采纳,获得10
35秒前
kydd完成签到,获得积分10
35秒前
高思博发布了新的文献求助10
38秒前
42秒前
小林发布了新的文献求助10
45秒前
ASS完成签到,获得积分20
45秒前
www268完成签到 ,获得积分10
46秒前
无心的秋珊完成签到 ,获得积分10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781287
求助须知:如何正确求助?哪些是违规求助? 3326814
关于积分的说明 10228352
捐赠科研通 3041803
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751