Integrative Analysis of BMI and Gene Expression Reveals Molecular Interactions Underlying Cancer Progression

癌症 基因表达 基因 计算生物学 生物 癌症研究 遗传学 生物信息学
作者
Jie-Huei Wang,Hui-Chen Lu,Zih-Han Wu,Tzu-Chi Chang
出处
期刊:Frontiers in bioscience [IMR Press]
卷期号:30 (8)
标识
DOI:10.31083/fbl43294
摘要

Background: Obesity is a chronic condition linked to health issues such as diabetes, heart disease, and increased cancer risk. High body mass index (BMI) is associated with cancers such as breast and colorectal cancer due to hormone imbalances and inflammation from excess fat, whereas a low BMI can raise cancer risk by weakening the immune system. Maintaining a normal BMI improves cancer treatment outcomes, but in some cases, higher BMI might offer protective effects—a phenomenon known as the “obesity paradox”. This study explores how BMI affects gene expression in cancer, using data from The Cancer Genome Atlas (TCGA), aiming to uncover links between BMI and cancer progression while identifying potential treatment targets. Methods: To analyze the data, a two-stage method using overlapping group screening (OGS) was applied. First, gene groups were identified with the “grpregOverlap” R package. Then, their interactions were tested using the sequence kernel association test. Significant gene-gene interactions were selected based on statistical measures. In the second stage, predictive models were built using regularized regression techniques such as ridge regression, lasso, and adaptive lasso, with generalized ridge regression used to improve accuracy and stability in handling high-dimensional data. Results: The proposed OGS-based method was tested on simulated and real-world datasets. Results showed that combining OGS with generalized ridge regression and adaptive lasso (OGS_G.ridge_ALasso) gave the best prediction performance, with lower error rates and greater stability compared to other models like support vector regression, k-nearest neighbors, and random forests. In practical applications, gene expression and BMI data from TCGA patients (including bladder, cervical, esophageal and liver cancers) were integrated to identify key genes and interactions related to BMI. Conclusions: Through evaluations on both simulated synthetic datasets and real-world datasets, we demonstrated the effectiveness of the proposed method in terms of predictive accuracy. Additionally, we identified BMI-associated genes and gene-gene interaction biomarkers across different cancer types and presented the corresponding network structures. Based on the key genes and gene interactions identified, we further explored how BMI influences cancer development and prognosis, providing deeper insights into the biological mechanisms underlying these associations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张关注了科研通微信公众号
刚刚
stargazer完成签到,获得积分10
刚刚
lcj发布了新的文献求助10
刚刚
1秒前
Lucas应助以恒之心采纳,获得10
1秒前
傅予菲完成签到,获得积分10
2秒前
海豚发布了新的文献求助10
2秒前
周世博发布了新的文献求助30
2秒前
2秒前
2秒前
波啦啦发布了新的文献求助10
2秒前
3秒前
4秒前
丹丹完成签到 ,获得积分10
4秒前
久久久久完成签到,获得积分10
4秒前
那种发布了新的文献求助10
4秒前
外向的凝阳发布了新的文献求助100
4秒前
evvj发布了新的文献求助10
5秒前
xinx发布了新的文献求助30
6秒前
领导范儿应助rachel03采纳,获得10
6秒前
月亮夏的夏完成签到,获得积分20
7秒前
7秒前
7秒前
健康萝卜完成签到,获得积分10
7秒前
暴躁的嘉懿完成签到,获得积分10
7秒前
Achin完成签到,获得积分10
8秒前
不想干活应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
慕青应助王欣采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得30
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
科研通AI6应助www111采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
敏感凡双应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
huangxq发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4492519
求助须知:如何正确求助?哪些是违规求助? 3945903
关于积分的说明 12235828
捐赠科研通 3603141
什么是DOI,文献DOI怎么找? 1981637
邀请新用户注册赠送积分活动 1018424
科研通“疑难数据库(出版商)”最低求助积分说明 911135