Exploring visual representations of hotel brand image: framework development using mixed methods

酒店业 业务 营销 广告 旅游 品牌管理 计算机科学 心理学 地理 考古
作者
Ningqiao Li,Fang Meng,Yan Tong
出处
期刊:International Journal of Contemporary Hospitality Management [Emerald Publishing Limited]
标识
DOI:10.1108/ijchm-08-2024-1238
摘要

Purpose This study aims to achieve two purposes: to construct multilevel visual representations regarding how a hotel brand is portrayed or perceived via various pictorial attributes and to develop a quantitative measurement framework that identifies these pictorial attributes by using deep learning models. Design/methodology/approach A mixed-methods approach was used across three phases. First, two pretrained deep learning models were used to identify manifest and photography-level attributes. The second phase involved qualitative surveys and quantitative techniques to generate attributes related to latent cognitive perceptions and brand personality. In the third phase, a labeled data set was created, and VGG16 models were trained to automatically identify these higher-level attributes from images. Findings A four-level conceptual framework was constructed to link hotel-generated photos with brand image perception. In addition, a measurement framework was developed using multiple deep learning algorithms (e.g. Place365, NIMA and VGG16) to identify and classify these pictorial attributes. Practical implications It offers actionable tools for marketers to strategically use photographs to project a distinct brand image and craft effective marketing communications on social media platforms, helping attract target audiences and differentiate their brand in a competitive market. Originality/value This multidisciplinary study innovatively integrates qualitative methods and deep learning to generate theoretical insights into the visual representation of hotel brand image. It bridges the gap in understanding how photos can be leveraged to develop brand image, strengthen brand competitiveness and improve the effectiveness of social media content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ximo完成签到,获得积分10
1秒前
xr发布了新的文献求助10
1秒前
cc发布了新的文献求助10
2秒前
深情安青应助健壮的豁采纳,获得10
2秒前
邵将完成签到,获得积分10
2秒前
橘淮北完成签到,获得积分10
3秒前
段非非完成签到,获得积分10
3秒前
King发布了新的文献求助10
4秒前
完美世界应助RQY采纳,获得10
4秒前
6秒前
陈谨完成签到 ,获得积分10
6秒前
7秒前
RB完成签到,获得积分10
7秒前
cai由于求助违规,被管理员扣积分50
8秒前
JamesPei应助橘淮北采纳,获得10
8秒前
electricelectric应助倾倾若兮采纳,获得30
9秒前
谷雨完成签到 ,获得积分10
9秒前
9秒前
拉长的绮梅完成签到,获得积分10
9秒前
Xinxxx发布了新的文献求助10
9秒前
9秒前
cc完成签到,获得积分10
10秒前
张婷婷发布了新的文献求助10
10秒前
Kvolu29完成签到,获得积分10
10秒前
风中冰香应助鲁滨逊采纳,获得10
10秒前
马马发布了新的文献求助10
11秒前
追寻荔枝完成签到 ,获得积分20
12秒前
12秒前
橙陈陈完成签到,获得积分20
12秒前
Ride完成签到,获得积分10
13秒前
13秒前
Ava应助嘟嘟嘟嘟采纳,获得10
13秒前
及禾发布了新的文献求助10
14秒前
风中冰香应助科研通管家采纳,获得20
14秒前
浮游应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
seedcui完成签到,获得积分10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285417
求助须知:如何正确求助?哪些是违规求助? 4438512
关于积分的说明 13817541
捐赠科研通 4319833
什么是DOI,文献DOI怎么找? 2371192
邀请新用户注册赠送积分活动 1366728
关于科研通互助平台的介绍 1330185