Seeing the Middle: Reconstructing 3D Internal Electrode Microstructures from Low‐Resolution Surfaces with Generative Diffusion Artificial Intelligence

生成语法 电极 扩散 分辨率(逻辑) 人工智能 生成模型 材料科学 微观结构 计算机视觉 计算机科学 冶金 物理 热力学 量子力学
作者
Zhiqiang Niu,Zhaoxia Zhou,Patrice Perrenot,Claire Villevieille,Wanhui Zhao,Qiong Cai,Valerie J. Pinfield,Yun Wang
出处
期刊:Small science [Wiley]
标识
DOI:10.1002/smsc.202500414
摘要

Characterizing the 3D complex energy materials interface is critical to understand the correlative relationship between performance, degradation, and structures. Unfortunately, the resolution of microscopy and image acquisition speed are limited by the nature of the hardware, causing high‐throughput characterization of energy materials to be prohibitive. Herein, REMind, a generative diffusion artificial intelligence model for fast and accurate reconstruction of electrode microstructures via focused ion beam‐scanning electron microscopy, is presented. REMind can generate high‐resolution internal microstructures between two low‐resolution surfaces after training on sufficient high‐resolution microstructures, enabling larger milling thickness between slices while keeping high‐fidelity imaging. REMind is first demonstrated for reconstructing solid oxide fuel cell (SOFC) anode microstructures. REMind resolves relevant multi‐scale structures with low pixel‐wise reconstruction error (<10%) and quantifies the generated uncertainty by calculating the generated entropy. Additionally, a multi‐scale multi‐physics SOFC model is employed to further quantify the reconstructed error regarding the electrochemical performance, i.e., operating current density versus overpotential. REMind shows good transferability, as proven by its ability to reconstruct other energy materials, including catalyst layers of proton exchange membrane fuel cells and solid‐state battery composite electrodes, demonstrating the potential for REMind to be used as a general‐purpose platform for broad development of energy technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
跳跃完成签到,获得积分10
1秒前
dagongren完成签到,获得积分10
1秒前
dou完成签到,获得积分10
1秒前
蓝桥兰灯完成签到,获得积分10
1秒前
1秒前
浮游应助QIQ采纳,获得10
2秒前
852应助QIQ采纳,获得10
2秒前
2秒前
MaSaR完成签到,获得积分10
3秒前
Ray发布了新的文献求助10
3秒前
4秒前
Kedr完成签到,获得积分10
4秒前
木云完成签到,获得积分10
4秒前
小蜜蜂完成签到,获得积分10
5秒前
浪子应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得150
5秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
大神装完成签到,获得积分10
6秒前
浪子应助科研通管家采纳,获得10
6秒前
Tourist应助科研通管家采纳,获得150
6秒前
科目三应助科研通管家采纳,获得10
6秒前
风停了发布了新的文献求助10
6秒前
Tourist应助科研通管家采纳,获得150
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
Yiyyan完成签到,获得积分10
7秒前
QIQ完成签到,获得积分10
8秒前
戴维少尉完成签到,获得积分10
8秒前
拼搏笑阳完成签到,获得积分10
8秒前
潇洒的思山完成签到,获得积分10
8秒前
淡定的安白完成签到,获得积分10
9秒前
可爱的函函应助zhangzhang采纳,获得10
9秒前
中岛悠斗完成签到,获得积分10
9秒前
柴犬完成签到 ,获得积分10
10秒前
胡楠完成签到,获得积分10
11秒前
加油加油完成签到,获得积分10
11秒前
朵朵完成签到,获得积分10
11秒前
hyw完成签到,获得积分10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5150491
求助须知:如何正确求助?哪些是违规求助? 4346334
关于积分的说明 13532184
捐赠科研通 4188947
什么是DOI,文献DOI怎么找? 2297248
邀请新用户注册赠送积分活动 1297630
关于科研通互助平台的介绍 1242073