极化子
凝聚态物理
自旋轨道相互作用
各向异性
自旋(空气动力学)
联轴节(管道)
材料科学
拉希巴效应
钙钛矿(结构)
物理
自旋电子学
铁磁性
光学
化学
结晶学
冶金
热力学
作者
Zelei Chen,Xiaoyu Wang,Yangfei Sun,Chuanxiang Sheng,Haibin Zhao,Jun Wang
出处
期刊:Nano Letters
[American Chemical Society]
日期:2025-09-08
标识
DOI:10.1021/acs.nanolett.5c03712
摘要
The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport. However, the intrinsic connection between the RDSOC and polariton spin evolution lacks an intuitive interpretation. Here, we demonstrate room-temperature exciton-polaritons with RDSOC in a microcavity containing anisotropic two-dimensional hybrid perovskites. We reveal that the RDSOC arises from geometric phase accumulation during polariton polarization evolution on the Poincaré sphere, which generates an effective gauge field and drives momentum-space spin splitting. By resonantly injecting polaritons, we achieve the generation, separation, and propagation of purer polariton spin states, i.e., a polariton spin Hall effect. Our findings establish geometric phases as the origin of intrinsic RDSOC, paving a feasible avenue for spin-selective control in perovskite-based photonic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI