Assessing the Anatomical Accuracy of AI‐Generated Medical Illustrations: A Comparative Study of Text‐to‐Image Generator Tools in Anatomy Education

医学 发电机(电路理论) 解剖 医学物理学 量子力学 功率(物理) 物理
作者
Mamdouh Eldesoqui,Emad Ali Albadawi,Khalid I. AlQumaizi,Maryam Nizar Mohammad Radwan,Hasnaa Ali Ebrahim,Manar Abd Elaziz Elsaid
出处
期刊:Clinical Anatomy [Wiley]
标识
DOI:10.1002/ca.70002
摘要

Historically, human anatomy education has been an essential part of medical training, depending on cadaveric dissection and anatomical representations. However, financial and ethical limitations have resulted in a decline in conventional teaching techniques, necessitating the investigation of alternative resources such as digital drawings and artificial intelligence (AI). The aim of this research was to assess and compare the anatomical precision of graphics produced by four AI text-to-image generators: Microsoft Bing, DeepAI, Freepik, and Gemini, emphasizing their value in medical education. On February 6, 2025, four AI text-to-image generators were used. Prompts for creating intricate anatomical images included the human heart, brain, skeletal thorax, and hand bones. Two anatomists and a radiologist evaluated the pictures produced according to anatomical standards. Bing and Gemini generated anatomically correct representations of the human heart, but DeepAI and Freepik were less accurate. All generators offered accurate reconstructions of the human brain; however, there were disparities in sulci and gyri, with Gemini performing best. Only Gemini delivered a correct sternum; the other generators misrepresented the rib count. The Gemini platform provided a satisfactory depiction of the human hand skeleton, but the outputs from other text-to-image generators were not anatomically accurate. This work examines the potential of generative AI in medical illustration, noting significant limitations in accuracy and detail, especially with bony structures. Although AI accelerates the drawing process, it cannot replace the proficiency of skilled medical illustrators. Continuous assessment and improvement of AI-generated material are essential to ensure that the criteria mandated for medical education are met.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
派总发布了新的文献求助10
1秒前
2秒前
英姑应助李xue采纳,获得10
5秒前
Ksa发布了新的文献求助10
7秒前
8秒前
10秒前
穆青完成签到,获得积分10
12秒前
搞怪人雄发布了新的文献求助10
13秒前
昏睡的以寒完成签到,获得积分10
13秒前
13秒前
开眼看看发布了新的文献求助10
14秒前
共享精神应助小5采纳,获得10
14秒前
852应助WYS513采纳,获得10
14秒前
111完成签到,获得积分10
15秒前
在水一方应助blingbling采纳,获得10
15秒前
汉堡包应助读书的时候采纳,获得10
16秒前
17秒前
清秀白亦给清秀白亦的求助进行了留言
17秒前
18秒前
congcong发布了新的文献求助10
20秒前
20秒前
23秒前
Hashirma发布了新的文献求助10
23秒前
24秒前
24秒前
lemon发布了新的文献求助30
24秒前
Ava应助Ksa采纳,获得10
27秒前
Xu发布了新的文献求助10
27秒前
blingbling发布了新的文献求助10
27秒前
27秒前
28秒前
wcy发布了新的文献求助10
30秒前
TIAN完成签到,获得积分10
30秒前
小5发布了新的文献求助10
32秒前
33秒前
zzz发布了新的文献求助10
33秒前
34秒前
Hello应助读书的时候采纳,获得10
35秒前
35秒前
35秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084168
求助须知:如何正确求助?哪些是违规求助? 3623319
关于积分的说明 11493999
捐赠科研通 3337837
什么是DOI,文献DOI怎么找? 1835011
邀请新用户注册赠送积分活动 903677
科研通“疑难数据库(出版商)”最低求助积分说明 821794