材料科学
聚醚酰亚胺
聚合物
半导体
并五苯
储能
有机半导体
兴奋剂
电介质
复合数
异质结
电子迁移率
载流子
光电子学
纳米技术
化学工程
化学物理
复合材料
热力学
薄膜晶体管
图层(电子)
功率(物理)
物理
工程类
作者
Tao Liu,Yang Liu,Jin Qian,Jiwei Zhai,Tao Zhou,Yao Zhou,Diming Xu,Wenfeng Liu,Di Zhou
标识
DOI:10.1002/adfm.202516202
摘要
Abstract Dielectric polymers used for electrostatic energy storage often exhibit considerable performance deterioration at elevated temperatures, which restricts their use in electronic devices and components operating under harsh conditions. Herein, a fully organic composite material incorporating a p‐type organic molecular semiconductor, pentacene (PT), into a polyetherimide (PEI) matrix is reported. The introduction of PT facilitates the formation of electron‐hole (E‐H) pairs at the heterojunction interfaces between PT and PEI polymer chains, thereby suppressing charge carrier mobility within the polymer matrix. This effect leads to enhanced high‐temperature breakdown strength ( E b ) and energy storage performance (ESP) of the composite films. At 25 °C, the composite achieves a high E b of ≈763.9 MV·m −1 and excellent energy storage properties, including an energy density ( U d ) of ≈10.5 J·cm −3 and a charge‐discharge efficiency ( η ) of ≈94.9%. At 150 °C, the E b increases from 472.8 MV·m −1 for pristine PEI to 683.6 MV·m −1 , while U d reaches a peak value of 7.35 J·cm −3 and η remains above 90%. This study proposes a straightforward and efficient approach for developing polymer dielectrics that function reliably in harsh environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI