Impact of Corporate Social Responsibility on the Financial Performance of Tourism Enterprises in Provinces Hosting China's Mixed World Heritage Sites: A Data‐Driven Machine Learning Approach

中国 旅游 企业社会责任 业务 世界遗产 财务 公共关系 地理 政治学 考古
作者
Bing Wang,Yuichiro Fujioka
出处
期刊:Corporate Social Responsibility and Environmental Management [Wiley]
卷期号:32 (6): 8428-8441
标识
DOI:10.1002/csr.70144
摘要

ABSTRACT This study examined the relationship between corporate social responsibility (CSR) and financial performance in the context of tourism firms operating in China's Mixed World Heritage regions. Using data from 2012 to 2019, four machine learning (ML) algorithms were evaluated for their ability to predict financial performance, with eXtreme Gradient Boosting (XGBoost) demonstrating the highest accuracy. The SHapley Additive exPlanations (SHAP) method was then applied to quantify the contribution of each CSR dimension. The findings revealed that shareholder responsibility had the strongest yet negative impact on financial performance, followed by social, employee, and supplier/customer/consumer responsibilities, all showing positive effects. Environmental responsibility exhibited mixed effects across financial indicators. Overall, CSR showed a negative influence on financial performance. By integrating interpretable ML techniques, this study offers methodological contributions to CSR research and provides practical insights for tourism firms and policymakers seeking to optimize CSR strategies in Heritage tourism contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
果果发布了新的文献求助10
2秒前
Lucas应助Lion采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
tuanheqi应助科研通管家采纳,获得150
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Tourist应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得30
3秒前
3秒前
chenqiumu应助科研通管家采纳,获得200
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
4秒前
充电宝应助科研通管家采纳,获得30
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
Tourist应助科研通管家采纳,获得10
4秒前
4秒前
科目三应助科研通管家采纳,获得10
4秒前
langzhiquan应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得30
4秒前
lalala应助科研通管家采纳,获得20
4秒前
tuanheqi应助科研通管家采纳,获得150
5秒前
情怀应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
Tourist应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
6秒前
6秒前
烟花应助科研通管家采纳,获得10
6秒前
哲欣应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得30
6秒前
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
tuanheqi应助科研通管家采纳,获得150
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295400
求助须知:如何正确求助?哪些是违规求助? 4444944
关于积分的说明 13834942
捐赠科研通 4329343
什么是DOI,文献DOI怎么找? 2376614
邀请新用户注册赠送积分活动 1371888
关于科研通互助平台的介绍 1337169