On the use of principal component analysis method to optimize sphere packing algorithm for lattice radiotherapy of large/bulky unresectable tumor

主成分分析 格子(音乐) 准直器 偏移量(计算机科学) 球体 材料科学 算法 核医学 数学 计算机科学 物理 光学 人工智能 医学 声学 天文 程序设计语言
作者
Josh Misa,J. Castle,Thomas A. Oldland,William St Clair,Mark E. Bernard,Damodar Pokhrel
出处
期刊:Medical Physics [Wiley]
卷期号:52 (7)
标识
DOI:10.1002/mp.17982
摘要

Abstract Background Spatially Fractionated Radiotherapy (SFRT) delivers highly heterogenous dose distribution, characterized by an alternating pattern of high‐ and low‐dose regions within the large tumor volume. Lattice SFRT (LRT) achieves this dose distribution via high‐dose spheres arranged in a hexagonal pattern throughout the tumor. A major obstacle in LRT planning is optimizing the number of spheres within the tumor while maintaining the geometric constraints to allow for steep dose gradients and preserving normal tissue dose levels. Purpose We present a novel strategy for lattice deployment for LRT using principal component analysis (PCA) to address the sphere packing problem. The aim of this report is improving sphere packing for LRT treatments will increase the volume of the peak dose the tumor receives from a given lattice configuration, potentially enhancing patient outcomes. Methods Three lattice deployment methods were investigated. Our proposed method split‐PCA (s‐PCA), in which the lattice pattern is oriented split between the first and second principal axes, 1‐PCA has the lattice pattern oriented based on the first principal axis, and n‐PCA which does not utilize PCA to orientate the lattice pattern within the tumor. Thirty‐five previously treated SFRT patients (15 Gy in 1 fraction) were replanned using each PCA method. All plans utilized four full VMAT arcs, offset collimator angles of ± 15°, 6MV‐FFF energy, and a lattice diameter of 1.5 cm and spacing of 3 cm. The resulting plans were evaluated based on D 50% , D mean , V 50% , D 10% , D 90% , peak‐to‐valley dose ratio (PVDR = D 10% ÷ D 90% ), D 2cm , and D max to nearby critical organs. Results The s‐PCA lattice plans had a statistically significant increase in the number of spheres packed within the tumor compared to the 1‐PCA (Δ mean = 0.91, p = 0.019) and n‐PCA (Δ mean = 1.43, p < 0.001). In addition, the s‐PCA method outperformed the n‐PCA method in terms of D 50% , D mean , V 50% , D 10% , and D 90% and statistically outperformed 1‐PCA in terms of D 50% , D 10% , and D 90% . However, the s‐PCA gave a statistically significant decrease in PVDR in comparison to the 1‐PCA (Δ mean = −0.94, p = 0.036) and the n‐PCA (Δ mean = −2.21, p < 0.001). Within our study cohort, there were no significant differences between the three deployment methods when analyzing D 2cm or maximum dose to critical organs. Conclusion This lattice deployment strategy demonstrated enhanced sphere packing, thus improving tumor dose while restricting maximum dose to critical organs. The s‐PCA approach may enhance debulking and sensitization of large and unresectable tumors for follow‐up treatments. The s‐PCA method has been implemented within our clinical practice, with future research focusing on prospective studies to assess clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助zhengzhao采纳,获得10
刚刚
研友_VZG7GZ应助曾经耳机采纳,获得10
2秒前
mystar发布了新的文献求助10
2秒前
我是老大应助dali采纳,获得10
3秒前
4秒前
蔡从安发布了新的文献求助10
4秒前
6秒前
解语花发布了新的文献求助50
6秒前
6秒前
Jasper应助大方的黄豆采纳,获得10
6秒前
hhhhh发布了新的文献求助10
7秒前
天tian完成签到,获得积分10
8秒前
8秒前
10秒前
11秒前
12秒前
dali发布了新的文献求助10
13秒前
14秒前
15秒前
Lim1819完成签到 ,获得积分10
15秒前
曾经耳机发布了新的文献求助10
15秒前
ding应助sincere-辉采纳,获得10
16秒前
蜉蝣完成签到,获得积分10
17秒前
Emily发布了新的文献求助10
17秒前
hanjja发布了新的文献求助10
18秒前
紫定能行完成签到,获得积分20
19秒前
19秒前
伍六七发布了新的文献求助10
19秒前
正正应助谢谢谢采纳,获得10
20秒前
孙菜关注了科研通微信公众号
22秒前
22秒前
22秒前
香蕉诗蕊应助hhhhh采纳,获得10
23秒前
24秒前
24秒前
oioioioioi发布了新的文献求助10
24秒前
25秒前
碧蓝幼菱完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
希望天下0贩的0应助xlj采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648614
求助须知:如何正确求助?哪些是违规求助? 4775865
关于积分的说明 15044750
捐赠科研通 4807529
什么是DOI,文献DOI怎么找? 2570836
邀请新用户注册赠送积分活动 1527657
关于科研通互助平台的介绍 1486538