Network Modeling Based on GNN and Network Behaviors

计算机科学 排队延迟 网络延迟 服务质量 调度(生产过程) 计算机网络 抖动 端到端延迟 聚类分析 网络数据包 分布式计算 人工智能 数学优化 电信 数学
作者
Yu Zhu,Waixi Liu,Sen Ling,Junming Luo
标识
DOI:10.1109/icccs55155.2022.9846439
摘要

Accurate network modeling can be used to help optimize load balancing or routing/flow scheduling strategies to ensure Quality of Service (QoS). However, existing network modeling methods have some disadvantages, such as, not being suitable for actual networks and low generalization. This article proposes a Link Delay Model (LDM) based on graph neural network (GNN). The key idea is inspired from the following observations: there is an inherent correlation between the delay, jitter, packet loss, and throughput of each link (this article calls them the basic network behavior), and the basic network behaviors of some links can fully decide and reflect the global network behavior (e.g., end-to-end delay). Firstly, this article proposes two link selection schemes (i.e., all links and few common links selected by clustering). Then, we use an improved GNN to learn the inherent relationship between the basic network behaviors of selected links and the global network behavior. Where the improved GNN uses multiple RNN iterations to aggregate messages in the message aggregation stage. The experiment results verify the feasibility and effectiveness of LDM. When using all links, LDM can accurately predict the end-to-end delay (R2=0.969). Compared with Queuing model and RouteNet, R2 is increased by 73% and 11%, respectively; under unknown flow scheduling strategy, the generalization ability of LDM (MRE=0.285) is also much better than Queuing model and RouteNet. When using partial common links, LDM has close prediction to RouteNet but reduces overhead by 78%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuzhu完成签到,获得积分10
刚刚
优雅苑睐完成签到,获得积分10
1秒前
zhangyujin完成签到,获得积分10
3秒前
SciGPT应助科研通管家采纳,获得10
4秒前
只A不B应助科研通管家采纳,获得30
4秒前
HEIKU应助科研通管家采纳,获得10
4秒前
coolkid应助科研通管家采纳,获得20
4秒前
踏实采波完成签到,获得积分10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
orixero应助hengha采纳,获得10
5秒前
fffff完成签到,获得积分10
5秒前
5秒前
FridaMa关注了科研通微信公众号
6秒前
迪鸣完成签到,获得积分10
6秒前
笑一笑完成签到,获得积分10
7秒前
U2完成签到,获得积分10
7秒前
8秒前
科研民工完成签到,获得积分10
8秒前
8秒前
熹熹完成签到,获得积分10
8秒前
xzaaaxz完成签到,获得积分10
8秒前
yecheng完成签到,获得积分10
9秒前
281911480完成签到,获得积分10
9秒前
疏水无纺布完成签到,获得积分10
10秒前
xjyyy完成签到 ,获得积分10
11秒前
紫金之巅完成签到 ,获得积分10
12秒前
旦旦旦旦旦旦完成签到,获得积分10
12秒前
溜溜完成签到,获得积分10
12秒前
周ZHOU发布了新的文献求助10
12秒前
大强完成签到,获得积分10
13秒前
猫小咪完成签到,获得积分10
13秒前
duoduo完成签到,获得积分10
13秒前
jinni完成签到,获得积分10
14秒前
14秒前
dengzhiyao完成签到 ,获得积分10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840963
求助须知:如何正确求助?哪些是违规求助? 3382925
关于积分的说明 10527049
捐赠科研通 3102785
什么是DOI,文献DOI怎么找? 1709003
邀请新用户注册赠送积分活动 822815
科研通“疑难数据库(出版商)”最低求助积分说明 773632