Deep Unrolled Low-Rank Tensor Completion for High Dynamic Range Imaging

计算机科学 稳健性(进化) 人工智能 深度学习 迭代法 算法 重影 模式识别(心理学) 生物化学 基因 化学
作者
Mai Thanh Nhat Truong,Edmund Y. Lam,Chul Lee
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5774-5787 被引量:13
标识
DOI:10.1109/tip.2022.3201708
摘要

The major challenge in high dynamic range (HDR) imaging for dynamic scenes is suppressing ghosting artifacts caused by large object motions or poor exposures. Whereas recent deep learning-based approaches have shown significant synthesis performance, interpretation and analysis of their behaviors are difficult and their performance is affected by the diversity of training data. In contrast, traditional model-based approaches yield inferior synthesis performance to learning-based algorithms despite their theoretical thoroughness. In this paper, we propose an algorithm unrolling approach to ghost-free HDR image synthesis algorithm that unrolls an iterative low-rank tensor completion algorithm into deep neural networks to take advantage of the merits of both learning- and model-based approaches while overcoming their weaknesses. First, we formulate ghost-free HDR image synthesis as a low-rank tensor completion problem by assuming the low-rank structure of the tensor constructed from low dynamic range (LDR) images and linear dependency among LDR images. We also define two regularization functions to compensate for modeling inaccuracy by extracting hidden model information. Then, we solve the problem efficiently using an iterative optimization algorithm by reformulating it into a series of subproblems. Finally, we unroll the iterative algorithm into a series of blocks corresponding to each iteration, in which the optimization variables are updated by rigorous closed-form solutions and the regularizers are updated by learned deep neural networks. Experimental results on different datasets show that the proposed algorithm provides better HDR image synthesis performance with superior robustness compared with state-of-the-art algorithms, while using significantly fewer training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
didi发布了新的文献求助10
2秒前
小天发布了新的文献求助150
3秒前
4秒前
小精灵发布了新的文献求助10
6秒前
Ryuki完成签到 ,获得积分10
7秒前
didi完成签到,获得积分10
10秒前
11秒前
12秒前
学术通zzz发布了新的文献求助10
12秒前
天津中医药峰完成签到,获得积分10
13秒前
菠萝炒蛋加饭完成签到 ,获得积分10
14秒前
minino完成签到 ,获得积分10
15秒前
moon发布了新的文献求助10
17秒前
Judy完成签到 ,获得积分10
19秒前
23秒前
话哈哈完成签到,获得积分10
23秒前
su完成签到,获得积分10
27秒前
李健应助chrysan采纳,获得10
32秒前
顾矜应助ChencanFang采纳,获得20
32秒前
郝好完成签到 ,获得积分10
34秒前
37秒前
9℃完成签到 ,获得积分10
39秒前
sharks完成签到,获得积分10
40秒前
40秒前
天天快乐应助手可摘星辰采纳,获得10
41秒前
41秒前
41秒前
42秒前
lynn完成签到 ,获得积分10
43秒前
46秒前
123456完成签到 ,获得积分10
46秒前
学术通zzz发布了新的文献求助10
46秒前
王小乐发布了新的文献求助10
47秒前
一二发布了新的文献求助10
48秒前
黑糖珍珠完成签到 ,获得积分10
49秒前
Hello应助踏雪飞鸿采纳,获得10
49秒前
chrysan发布了新的文献求助10
50秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315