Suicidal behaviour prediction models using machine learning techniques: A systematic review

机器学习 人工智能 计算机科学
作者
Noratikah Nordin,Zurinahni Zainol,Mohd Halim Mohd Noor,Lai Fong Chan
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:132: 102395-102395 被引量:33
标识
DOI:10.1016/j.artmed.2022.102395
摘要

Early detection and prediction of suicidal behaviour are key factors in suicide control. In conjunction with recent advances in the field of artificial intelligence, there is increasing research into how machine learning can assist in the detection, prediction and treatment of suicidal behaviour. Therefore, this study aims to provide a comprehensive review of the literature exploring machine learning techniques in the study of suicidal behaviour prediction. A search of four databases was conducted: Web of Science, PubMed, Dimensions, and Scopus for research papers dated between January 2016 and September 2021. The search keywords are ‘data mining’, ‘machine learning’ in combination with ‘suicidal behaviour’, ‘suicide’, ‘suicide attempt’, ‘suicidal ideation’, ‘suicide plan’ and ‘self-harm’. The studies that used machine learning techniques were synthesized according to the countries of the articles, sample description, sample size, classification tasks, number of features used to develop the models, types of machine learning techniques, and evaluation of performance metrics. Thirty-five empirical articles met the criteria to be included in the current review. We provide a general overview of machine learning techniques, examine the feature categories, describe methodological challenges, and suggest areas for improvement and research directions. Ensemble prediction models have been shown to be more accurate and useful than single prediction models. Machine learning has great potential for improving estimates of future suicidal behaviour and monitoring changes in risk over time. Further research can address important challenges and potential opportunities that may contribute to significant advances in suicide prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助梁锐彬采纳,获得10
1秒前
2秒前
顾矜应助舒心书南采纳,获得10
3秒前
科研小能手完成签到,获得积分10
4秒前
ccc完成签到 ,获得积分10
5秒前
6秒前
6秒前
一只咸鱼发布了新的文献求助10
7秒前
嫩嫩完成签到,获得积分10
8秒前
白白白完成签到,获得积分10
8秒前
Orochimaru发布了新的文献求助10
8秒前
9秒前
zho发布了新的文献求助10
10秒前
满意岩发布了新的文献求助10
11秒前
jenningseastera应助嫩嫩采纳,获得10
12秒前
CipherSage应助肉片牛帅帅采纳,获得10
12秒前
12秒前
黄huahua完成签到,获得积分10
13秒前
13秒前
胖蛋蛋蛋完成签到,获得积分10
13秒前
阿蒙发布了新的文献求助10
14秒前
852应助白白白采纳,获得10
14秒前
滴滴哩哩应助清脆爆米花采纳,获得20
15秒前
科研萌新完成签到,获得积分20
15秒前
16秒前
糖糖糖完成签到,获得积分10
16秒前
bodhi发布了新的文献求助10
17秒前
谷雨茶完成签到,获得积分10
17秒前
感性的大楚完成签到 ,获得积分10
18秒前
满意岩完成签到,获得积分10
19秒前
勤劳的筝发布了新的文献求助150
19秒前
19秒前
20秒前
闾丘黎昕发布了新的文献求助10
21秒前
万卓玛完成签到,获得积分10
21秒前
21秒前
hx完成签到 ,获得积分10
22秒前
深情安青应助依亦然采纳,获得10
22秒前
23秒前
penguin应助兴奋大马喽采纳,获得10
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243