A comparison of EMG-based hand gesture recognition systems based on supervised and reinforcement learning

计算机科学 人工智能 强化学习 手势识别 机器学习 手势 监督学习 特征(语言学) 特征提取 模式识别(心理学) 试验装置 人工神经网络 语言学 哲学
作者
Juan Pablo Vásconez,Lorena Isabel Barona López,Ángel Leonardo Valdivieso Caraguay,Marco E. Benalcázar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106327-106327 被引量:3
标识
DOI:10.1016/j.engappai.2023.106327
摘要

Hand gesture recognition (HGR) based on electromyography signals (EMGs) has been one of the most relevant research topics in the human–machine interfaces field in recent years. The HGR systems are aimed at identifying the moment in which a hand gesture was performed as well as the gesture category. To date, several HGR state-of-the-art methods are based mainly on supervised machine learning (ML) techniques. However, the use of reinforcement learning (RL) approaches to classify EMGs has not yet been thoroughly evaluated. Moreover, the behavior of HGR systems based on ML and RL methods on large datasets for user-general HGR systems is still an open research problem. In the present work, we compare a supervised learning with a reinforcement learning HGR system, which are composed of the following stages: pre-processing, feature extraction, classification, and post-processing. We compared the performance of using both a supervised and a reinforcement learning method to classify and recognize EMGs for six different hand gestures. We performed experiments by using training, validation, and test sets on the EMG-EPN-612 public dataset, and the results were evaluated for user-general HGR models. The final accuracy results on the test set demonstrate that the best model was obtained for the supervised learning method, reaching up to 90.49%±9.7% and 86.83%±11.30% for classification and recognition accuracy respectively. The results obtained in this work demonstrated that supervised learning methods outperform reinforcement learning methods for user-general HGR systems based on EMGs for the EMG-EPN-612 dataset distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助monere采纳,获得10
1秒前
酷波er应助材化小将军采纳,获得10
2秒前
3秒前
mhc完成签到,获得积分20
4秒前
panpan完成签到,获得积分10
5秒前
tthxq发布了新的文献求助10
8秒前
8秒前
10秒前
香蕉觅云应助LisaZhuo采纳,获得10
10秒前
科研通AI5应助李海洋采纳,获得10
12秒前
13秒前
所所应助知性的真采纳,获得10
15秒前
吴未完成签到,获得积分10
16秒前
小黑发布了新的文献求助10
16秒前
18秒前
Lee完成签到,获得积分10
20秒前
20秒前
财来完成签到 ,获得积分10
21秒前
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
22秒前
温暖芸应助科研通管家采纳,获得20
22秒前
科目三应助科研通管家采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
温暖芸应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
22秒前
23秒前
zhanghaoshan发布了新的文献求助10
24秒前
dwls完成签到,获得积分10
26秒前
儒雅沛凝发布了新的文献求助10
26秒前
李海洋发布了新的文献求助10
27秒前
YSL发布了新的文献求助10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790999
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276539
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761056