材料科学
合金
弹性模量
钛合金
应力屏蔽
复合材料
纹理(宇宙学)
模数
极限抗拉强度
钛
激光器
脉冲激光沉积
冶金
薄膜
植入
纳米技术
光学
计算机科学
医学
图像(数学)
外科
物理
人工智能
作者
F. Arias-González,Alejandra Rodríguez‐Contreras,Miquel Punset,José María Manero,Óscar Barro,Mónica Fernández‐Arias,F. Lusquiños,Javier Gil,J. Pou
出处
期刊:Materials
[Multidisciplinary Digital Publishing Institute]
日期:2022-10-14
卷期号:15 (20): 7172-7172
被引量:18
摘要
Present commercial titanium alloy implants have an elastic modulus higher than 100 GPa, whereas that of the cortical bone is much smaller (17−28 GPa). This elastic modulus mismatch produces a stress shielding effect and the resorption of the bone surrounding the implant. In the present work, a <100> fiber texture is developed in β type Ti-42Nb (wt%) alloy ingots generated by laser-directed energy deposition (LDED) in order to achieve anisotropic mechanical properties. In addition, we demonstrate that laser-deposited β type Ti-42Nb alloy ingots with an intense <100> fiber texture exhibit a very low elastic modulus in the building direction (Ez < 50 GPa) and high yield (σ0.2z > 700 MPa) and tensile (UTSz > 700 MPa) strengths. Laser-deposited Ti-42Nb alloy enhances the osteoinductive effect, promoting the adhesion, proliferation, and spreading of human osteoblast-like cells. Hence, we propose that laser-deposited β type Ti-42Nb alloy is a potentially promising candidate for the manufacturing of pioneering biomedical implants with a very low elastic modulus that can suppress stress shielding.
科研通智能强力驱动
Strongly Powered by AbleSci AI