Prediction of prognosis in COVID-19 patients using machine learning: A systematic review and meta-analysis

医学 检查表 接收机工作特性 重症监护室 科克伦图书馆 2019年冠状病毒病(COVID-19) 内科学 曲线下面积 机械通风 荟萃分析 梅德林 系统回顾 急诊医学 重症监护医学 机器学习 疾病 心理学 政治学 计算机科学 传染病(医学专业) 法学 认知心理学
作者
Ruiyao Chen,Jiayuan Chen,Sen Yang,Shuqing Luo,Zhongzhou Xiao,Lu Lu,Bilin Liang,Sichen Liu,Huwei Shi,Jie Xu
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:177: 105151-105151 被引量:12
标识
DOI:10.1016/j.ijmedinf.2023.105151
摘要

Accurate prediction of prognostic outcomes in patients with COVID-19 could facilitate clinical decision-making and medical resource allocation. However, little is known about the ability of machine learning (ML) to predict prognosis in COVID-19 patients.This study aimed to systematically examine the prognostic value of ML in patients with COVID-19.A systematic search was conducted in PubMed, Web of Science, Embase, Cochrane Library, and IEEE Xplore up to December 15, 2021. Studies predicting the prognostic outcomes of COVID-19 patients using ML were eligible for inclusion. Risk of bias was evaluated by a tailored checklist based on Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Pooled sensitivity, specificity, and area under the receiver operating curve (AUC) were calculated to evaluate model performance.A total of 33 studies that described 35 models were eligible for inclusion, with 27 models presenting mortality, four intensive care unit (ICU) admission, and four use of ventilation. For predicting mortality, ML gave a pooled sensitivity of 0.86 (95% CI, 0.79-0.90), a specificity of 0.87 (95% CI, 0.80-0.92), and an AUC of 0.93 (95% CI, 0.90-0.95). For the prediction of ICU admission, ML had a sensitivity of 0.86 (95% CI, 0.78-0.92), a specificity of 0.81 (95% CI, 0.66-0.91), and an AUC of 0.91 (95% CI, 0.88-0.93). For the prediction of ventilation, ML had a sensitivity of 0.81 (95% CI, 0.68-0.90), a specificity of 0.78 (95% CI, 0.66-0.87), and an AUC of 0.87 (95% CI, 0.83-0.89). Meta-regression analyses indicated that algorithm, population, study design, and source of dataset influenced the pooled estimate.This meta-analysis demonstrated the satisfactory performance of ML in predicting prognostic outcomes in patients with COVID-19, suggesting the potential value of ML to support clinical decision-making. However, improvements to methodology and validation are still necessary before its application in routine clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Truman发布了新的文献求助10
刚刚
刚刚
打打应助Gp采纳,获得10
1秒前
SciGPT应助lulu采纳,获得10
1秒前
贾舒涵发布了新的文献求助30
2秒前
rapa发布了新的文献求助10
2秒前
熊猫侠发布了新的文献求助30
2秒前
隐形曼青应助蟹蟹采纳,获得10
2秒前
dragon wu发布了新的文献求助10
3秒前
lin发布了新的文献求助10
3秒前
星辰大海应助沈书采纳,获得10
4秒前
一亿发布了新的文献求助10
4秒前
多多发布了新的文献求助10
4秒前
研友_Z3vemn发布了新的文献求助100
5秒前
5秒前
6秒前
6秒前
6秒前
Dummers完成签到 ,获得积分10
6秒前
杏任牛轧糖完成签到 ,获得积分10
7秒前
7秒前
7秒前
绕地球3圈完成签到,获得积分10
7秒前
老迟到的尔白牛牛完成签到,获得积分10
8秒前
8秒前
pyc完成签到,获得积分10
9秒前
9秒前
Owen应助小殷小殷人间福音采纳,获得10
9秒前
yan发布了新的文献求助10
10秒前
聪慧水池发布了新的文献求助20
10秒前
简单的千凝应助栗子采纳,获得20
11秒前
赘婿应助linliqing采纳,获得10
11秒前
12秒前
tamo发布了新的文献求助10
12秒前
13秒前
13秒前
lulu发布了新的文献求助10
13秒前
陳.完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794234
求助须知:如何正确求助?哪些是违规求助? 3339125
关于积分的说明 10294117
捐赠科研通 3055695
什么是DOI,文献DOI怎么找? 1676766
邀请新用户注册赠送积分活动 804705
科研通“疑难数据库(出版商)”最低求助积分说明 762051