亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CGAN-rIRN: a data-augmented deep learning approach to accurate classification of mental tasks for a fNIRS-based brain-computer interface

计算机科学 脑-机接口 人工智能 功能近红外光谱 特征提取 深度学习 模式识别(心理学) 稳健性(进化) 卷积神经网络 人工神经网络 机器学习 前额叶皮质 认知 脑电图 精神科 基因 生物 神经科学 生物化学 化学 心理学
作者
Yao Zhang,Dongyuan Liu,Tieni Li,Pengrui Zhang,Zhiyong Li,Feng Gao
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:14 (6): 2934-2934 被引量:14
标识
DOI:10.1364/boe.489179
摘要

Functional near-infrared spectroscopy (fNIRS) is increasingly used to investigate different mental tasks for brain-computer interface (BCI) control due to its excellent environmental and motion robustness. Feature extraction and classification strategy for fNIRS signal are essential to enhance the classification accuracy of voluntarily controlled BCI systems. The limitation of traditional machine learning classifiers (MLCs) lies in manual feature engineering, which is considered as one of the drawbacks that reduce accuracy. Since the fNIRS signal is a typical multivariate time series with multi-dimensionality and complexity, it makes the deep learning classifier (DLC) ideal for classifying neural activation patterns. However, the inherent bottleneck of DLCs is the requirement of substantial-scale, high-quality labeled training data and expensive computational resources to train deep networks. The existing DLCs for classifying mental tasks do not fully consider the temporal and spatial properties of fNIRS signals. Therefore, a specifically-designed DLC is desired to classify multi-tasks with high accuracy in fNIRS-BCI. To this end, we herein propose a novel data-augmented DLC to accurately classify mental tasks, which employs a convolution-based conditional generative adversarial network (CGAN) for data augmentation and a revised Inception-ResNet (rIRN) based DLC. The CGAN is utilized to generate class-specific synthetic fNIRS signals to augment the training dataset. The network architecture of rIRN is elaborately designed in accordance with the characteristics of the fNIRS signal, with serial multiple spatial and temporal feature extraction modules (FEMs), where each FEM performs deep and multi-scale feature extraction and fusion. The results of the paradigm experiments show that the proposed CGAN-rIRN approach improves the single-trial accuracy for mental arithmetic and mental singing tasks in both the data augmentation and classifier, as compared to the traditional MLCs and the commonly used DLCs. The proposed fully data-driven hybrid deep learning approach paves a promising way to improve the classification performance of volitional control fNIRS-BCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助yuxia采纳,获得10
11秒前
20秒前
32秒前
32秒前
就是梦而已完成签到,获得积分10
35秒前
窝窝窝书完成签到,获得积分10
53秒前
53秒前
仁爱的狗发布了新的文献求助10
58秒前
1分钟前
仁爱的狗完成签到,获得积分10
1分钟前
housii完成签到,获得积分10
1分钟前
1分钟前
housii发布了新的文献求助10
1分钟前
勤奋丹萱完成签到 ,获得积分10
1分钟前
Mic应助housii采纳,获得10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得20
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
1分钟前
碳酸芙兰完成签到,获得积分10
1分钟前
1分钟前
msk完成签到 ,获得积分10
1分钟前
1分钟前
cheng完成签到 ,获得积分10
2分钟前
洒脱完成签到,获得积分10
2分钟前
CCS完成签到 ,获得积分10
2分钟前
2分钟前
Gabriel发布了新的文献求助10
2分钟前
fei完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
默默襄发布了新的文献求助10
2分钟前
浮游应助小猪会爆炸采纳,获得10
2分钟前
2分钟前
魔幻安南完成签到 ,获得积分10
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302133
求助须知:如何正确求助?哪些是违规求助? 4449379
关于积分的说明 13848275
捐赠科研通 4335535
什么是DOI,文献DOI怎么找? 2380395
邀请新用户注册赠送积分活动 1375402
关于科研通互助平台的介绍 1341557