Boundary-Aware Bilateral Fusion Network for Cloud Detection

计算机科学 云计算 边界(拓扑) 深度学习 特征(语言学) 人工智能 数据挖掘 遥感 数学 地质学 语言学 操作系统 数学分析 哲学
作者
Chao Zhao,Xiang Zhang,Nailiang Kuang,Hangzai Luo,Sheng Zhong,Jianping Fan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:7
标识
DOI:10.1109/tgrs.2023.3276750
摘要

Cloud detection is one of the key technologies in the field of remote sensing. Although extensive deep learning-based cloud detection methods achieve good performance, their detection results in confusing areas such as cloud boundaries and thin clouds are often not satisfactory due to the potential inter-class similarity and intra-class inconsistency of objects. To this end, we propose a Boundary-Aware Bilateral Fusion network (BABFNet), which effectively enhances cloud detection in confusing areas by introducing a boundary prediction branch as an auxiliary. To avoid the loss of details, the boundary prediction branch is designed to run at full resolution with a shallow architecture, while some Semantic Enhancement Modules (SEMs) are used to supplement high-level semantic information by introducing multi-level encoder features of the cloud detection branch. This feature sharing in turn drives the cloud detection branch to focus more on cloud boundaries during training. At the end of the network, a Bilateral Fusion Module (BFM) is added for information complementarity between features from these two branches. The features from the cloud detection branch provide multi-scale features to the boundary prediction branch for more accurate boundary prediction, while the features from the boundary prediction branch further serve as prior knowledge to help the cloud detection branch aggregate contextual information. To verify the effectiveness of the proposed method, we select four different networks as cloud detection branches and conduct comparative experiments on two public datasets, GF-1 WFV and MODIS. The experimental results show that the proposed method significantly enhances cloud detection in confusing areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
qiuwuji完成签到,获得积分10
1秒前
2秒前
清秀的鲂完成签到,获得积分10
2秒前
sarmad完成签到,获得积分10
2秒前
3秒前
健壮的悟空完成签到 ,获得积分10
3秒前
QIHBY发布了新的文献求助10
3秒前
4秒前
xwydx完成签到,获得积分10
4秒前
无情静柏发布了新的文献求助10
6秒前
Blaseaka完成签到 ,获得积分0
7秒前
虚怀若谷发布了新的文献求助10
7秒前
7秒前
Karol发布了新的文献求助10
7秒前
科研通AI6应助zhang采纳,获得10
7秒前
aaa完成签到 ,获得积分10
8秒前
灵巧的熊猫完成签到,获得积分10
8秒前
lucky发布了新的文献求助10
8秒前
9秒前
11秒前
SciGPT应助猪猪侠采纳,获得10
13秒前
wwho_O完成签到 ,获得积分10
13秒前
13秒前
hy发布了新的文献求助10
13秒前
13秒前
阿枫完成签到,获得积分10
14秒前
Leoon完成签到 ,获得积分10
15秒前
自由小蚂蚁完成签到,获得积分10
15秒前
大个应助后青春期的痘采纳,获得10
15秒前
翟大有完成签到 ,获得积分0
16秒前
16秒前
萤火虫发布了新的文献求助10
17秒前
hyy发布了新的文献求助10
17秒前
1111完成签到,获得积分10
19秒前
Gauss驳回了yznfly应助
19秒前
21秒前
Karol发布了新的文献求助10
22秒前
22秒前
陈星锦完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497419
求助须知:如何正确求助?哪些是违规求助? 4594913
关于积分的说明 14447079
捐赠科研通 4527566
什么是DOI,文献DOI怎么找? 2480940
邀请新用户注册赠送积分活动 1465311
关于科研通互助平台的介绍 1437920