Clinical Features, Non-Contrast CT Radiomic and Radiological Signs in Models for the Prediction of Hematoma Expansion in Intracerebral Hemorrhage

医学 放射性武器 脑出血 无线电技术 放射科 血肿 纳入和排除标准 外科 病理 格拉斯哥昏迷指数 替代医学
作者
Zejia Chen,Liying Zhang,André Carrington,Rebecca E. Thornhill,Olivier Miguel,Angela M. Auriat,Nima Omid‐Fard,Shivaprakash B. Hiremath,Vered Tshemeister Abitbul,Dar Dowlatshahi,Andrew M. Demchuk,David J. Gladstone,Andrea Morotti,Ilaria Casetta,Enrico Fainardi,Thien Huynh,Marah Elkabouli,Zoé Talbot,Gerd Melkus,Richard I. Aviv
出处
期刊:Canadian Association of Radiologists journal [SAGE]
卷期号:74 (4): 713-722 被引量:3
标识
DOI:10.1177/08465371231168383
摘要

Purpose Rapid identification of hematoma expansion (HE) risk at baseline is a priority in intracerebral hemorrhage (ICH) patients and may impact clinical decision making. Predictive scores using clinical features and Non-Contract Computed Tomography (NCCT)-based features exist, however, the extent to which each feature set contributes to identification is limited. This paper aims to investigate the relative value of clinical, radiological, and radiomics features in HE prediction. Methods Original data was retrospectively obtained from three major prospective clinical trials [“Spot Sign” Selection of Intracerebral Hemorrhage to Guide Hemostatic Therapy (SPOTLIGHT)NCT01359202; The Spot Sign for Predicting and Treating ICH Growth Study (STOP-IT)NCT00810888] Patients baseline and follow-up scans following ICH were included. Clinical, NCCT radiological, and radiomics features were extracted, and multivariate modeling was conducted on each feature set. Results 317 patients from 38 sites met inclusion criteria. Warfarin use (p=0.001) and GCS score (p=0.046) were significant clinical predictors of HE. The best performing model for HE prediction included clinical, radiological, and radiomic features with an area under the curve (AUC) of 87.7%. NCCT radiological features improved upon clinical benchmark model AUC by 6.5% and a clinical & radiomic combination model by 6.4%. Addition of radiomics features improved goodness of fit of both clinical (p=0.012) and clinical & NCCT radiological (p=0.007) models, with marginal improvements on AUC. Inclusion of NCCT radiological signs was best for ruling out HE whereas the radiomic features were best for ruling in HE. Conclusion NCCT-based radiological and radiomics features can improve HE prediction when added to clinical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
木香发布了新的文献求助10
1秒前
2秒前
2秒前
华仔应助baifeng采纳,获得10
2秒前
2秒前
深情安青应助番茄椰采纳,获得10
2秒前
2秒前
大模型应助整齐的不评采纳,获得10
2秒前
3秒前
Uu发布了新的文献求助10
3秒前
4秒前
徐梦发布了新的文献求助10
4秒前
李健应助ckz采纳,获得10
4秒前
dfggb发布了新的文献求助10
5秒前
6秒前
6秒前
rooney发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
9秒前
爱科研发布了新的文献求助10
9秒前
maver完成签到,获得积分10
10秒前
ljj1998发布了新的文献求助10
10秒前
10秒前
kyhzxy发布了新的文献求助10
11秒前
11秒前
材料生发布了新的文献求助10
11秒前
强强发布了新的文献求助10
12秒前
zh发布了新的文献求助10
12秒前
柳煜城发布了新的文献求助20
13秒前
13秒前
13秒前
13秒前
小熊完成签到,获得积分20
13秒前
14秒前
徐梦完成签到,获得积分10
14秒前
博一博Xing_完成签到 ,获得积分10
14秒前
善学以致用应助Uu采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492447
求助须知:如何正确求助?哪些是违规求助? 4590578
关于积分的说明 14431018
捐赠科研通 4523031
什么是DOI,文献DOI怎么找? 2478141
邀请新用户注册赠送积分活动 1463167
关于科研通互助平台的介绍 1435852