医学
放射性武器
脑出血
无线电技术
放射科
血肿
纳入和排除标准
外科
病理
格拉斯哥昏迷指数
替代医学
作者
Zejia Chen,Liying Zhang,André Carrington,Rebecca E. Thornhill,Olivier Miguel,Angela M. Auriat,Nima Omid‐Fard,Shivaprakash B. Hiremath,Vered Tshemeister Abitbul,Dar Dowlatshahi,Andrew M. Demchuk,David J. Gladstone,Andrea Morotti,Ilaria Casetta,Enrico Fainardi,Thien Huynh,Marah Elkabouli,Zoé Talbot,Gerd Melkus,Richard I. Aviv
标识
DOI:10.1177/08465371231168383
摘要
Purpose Rapid identification of hematoma expansion (HE) risk at baseline is a priority in intracerebral hemorrhage (ICH) patients and may impact clinical decision making. Predictive scores using clinical features and Non-Contract Computed Tomography (NCCT)-based features exist, however, the extent to which each feature set contributes to identification is limited. This paper aims to investigate the relative value of clinical, radiological, and radiomics features in HE prediction. Methods Original data was retrospectively obtained from three major prospective clinical trials [“Spot Sign” Selection of Intracerebral Hemorrhage to Guide Hemostatic Therapy (SPOTLIGHT)NCT01359202; The Spot Sign for Predicting and Treating ICH Growth Study (STOP-IT)NCT00810888] Patients baseline and follow-up scans following ICH were included. Clinical, NCCT radiological, and radiomics features were extracted, and multivariate modeling was conducted on each feature set. Results 317 patients from 38 sites met inclusion criteria. Warfarin use (p=0.001) and GCS score (p=0.046) were significant clinical predictors of HE. The best performing model for HE prediction included clinical, radiological, and radiomic features with an area under the curve (AUC) of 87.7%. NCCT radiological features improved upon clinical benchmark model AUC by 6.5% and a clinical & radiomic combination model by 6.4%. Addition of radiomics features improved goodness of fit of both clinical (p=0.012) and clinical & NCCT radiological (p=0.007) models, with marginal improvements on AUC. Inclusion of NCCT radiological signs was best for ruling out HE whereas the radiomic features were best for ruling in HE. Conclusion NCCT-based radiological and radiomics features can improve HE prediction when added to clinical features.
科研通智能强力驱动
Strongly Powered by AbleSci AI