Towards dropout training for convolutional neural networks

人工神经网络 培训(气象学) 模式识别(心理学) 学习迁移 深层神经网络 任务(项目管理) 卷积(计算机科学)
作者
Haibing Wu,Xiaodong Gu
出处
期刊:Neural Networks [Elsevier BV]
卷期号:71: 1-10 被引量:212
标识
DOI:10.1016/j.neunet.2015.07.007
摘要

Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this insight, we advocate employing our proposed probabilistic weighted pooling, instead of commonly used max-pooling, to act as model averaging at test time. Empirical evidence validates the superiority of probabilistic weighted pooling. We also empirically show that the effect of convolutional dropout is not trivial, despite the dramatically reduced possibility of over-fitting due to the convolutional architecture. Elaborately designing dropout training simultaneously in max-pooling and fully-connected layers, we achieve state-of-the-art performance on MNIST, and very competitive results on CIFAR-10 and CIFAR-100, relative to other approaches without data augmentation. Finally, we compare max-pooling dropout and stochastic pooling, both of which introduce stochasticity based on multinomial distributions at pooling stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
加菲丰丰应助bwh采纳,获得30
2秒前
李健的小迷弟应助rsimap360采纳,获得10
2秒前
aa14122发布了新的文献求助10
3秒前
动听的小甜瓜完成签到 ,获得积分10
4秒前
yao完成签到,获得积分10
6秒前
鸡蛋灌饼发布了新的文献求助10
6秒前
Lucas应助JimWei118采纳,获得10
7秒前
7秒前
丁植夏完成签到,获得积分10
7秒前
shiizii应助WANG采纳,获得10
8秒前
Leo_ms关注了科研通微信公众号
9秒前
科研通AI2S应助Xin采纳,获得10
9秒前
Rondab应助刘刘采纳,获得10
9秒前
9秒前
花重锦官城完成签到,获得积分20
9秒前
林天完成签到,获得积分10
10秒前
sunrise发布了新的文献求助20
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
汪少侠发布了新的文献求助10
11秒前
情怀应助沉静的靖巧采纳,获得10
12秒前
Jasper应助搞怪的元菱采纳,获得10
12秒前
13秒前
13秒前
13秒前
XZZ发布了新的文献求助10
13秒前
YY完成签到,获得积分20
13秒前
14秒前
14秒前
左旋多巴完成签到,获得积分10
14秒前
fufufuxia完成签到,获得积分10
15秒前
15秒前
静静完成签到,获得积分10
16秒前
谷谷发布了新的文献求助10
16秒前
17秒前
17秒前
SYLH应助bwh采纳,获得10
17秒前
18秒前
飞飞鱼发布了新的文献求助10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4026011
求助须知:如何正确求助?哪些是违规求助? 3565808
关于积分的说明 11350301
捐赠科研通 3296754
什么是DOI,文献DOI怎么找? 1815868
邀请新用户注册赠送积分活动 890289
科研通“疑难数据库(出版商)”最低求助积分说明 813460