亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

One-Dimensional Convolutional Neural Networks Combined with Channel Selection Strategy for Seizure Prediction Using Long-Term Intracranial EEG

计算机科学 脑电图 卷积神经网络 人工智能 模式识别(心理学) 人工神经网络 深度学习 期限(时间) 癫痫发作 癫痫 机器学习 发作性
作者
Xiaoshuang Wang,Guanghui Zhang,Ying Wang,Lin Yang,Zhanhua Liang,Fengyu Cong
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:: 2150048-
标识
DOI:10.1142/s0129065721500489
摘要

Seizure prediction using intracranial electroencephalogram (iEEG) has attracted an increasing attention during recent years. iEEG signals are commonly recorded in the form of multiple channels. Many previous studies generally used the iEEG signals of all channels to predict seizures, ignoring the consideration of channel selection. In this study, a method of one-dimensional convolutional neural networks (1D-CNN) combined with channel selection strategy was proposed for seizure prediction. First, we used 30-s sliding windows to segment the raw iEEG signals. Then, the 30-s iEEG segments, which were in three channel forms (single channel, channels only from seizure onset or free zone and all channels from seizure onset and free zones), were used as the inputs of 1D-CNN for classification, and the patient-specific model was trained. Finally, the channel form with the best classification was selected for each patient. The proposed method was evaluated on the Freiburg Hospital iEEG dataset. In the situation of seizure occurrence period (SOP) of 30[Formula: see text]min and seizure prediction horizon (SPH) of 5[Formula: see text]min, 98.60[Formula: see text] accuracy, 98.85[Formula: see text] sensitivity and 0.01/h false prediction rate (FPR) were achieved. In the situation of SOP of 60[Formula: see text]min and SPH of 5[Formula: see text]min, 98.32[Formula: see text] accuracy, 98.48[Formula: see text] sensitivity and 0.01/h FPR were attained. Compared with the many existing methods using the same iEEG dataset, our method showed a better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助四月天采纳,获得10
4秒前
芬芬发布了新的文献求助10
5秒前
7秒前
cheezburger发布了新的文献求助10
12秒前
12秒前
可靠的老鼠完成签到,获得积分10
13秒前
范振杰发布了新的文献求助10
17秒前
cheezburger完成签到,获得积分10
18秒前
恒温失效关注了科研通微信公众号
20秒前
21秒前
绝尘发布了新的文献求助20
21秒前
英俊的铭应助cnbhhhhh采纳,获得10
23秒前
四月天发布了新的文献求助10
25秒前
斯寜应助绝尘采纳,获得10
29秒前
科研通AI2S应助younger采纳,获得10
32秒前
33秒前
科研通AI2S应助范振杰采纳,获得10
35秒前
36秒前
卡琳完成签到 ,获得积分10
36秒前
37秒前
四月天完成签到,获得积分20
37秒前
恒温失效发布了新的文献求助10
38秒前
40秒前
43秒前
yaoyh_gc发布了新的文献求助10
45秒前
zheng完成签到 ,获得积分10
46秒前
47秒前
wackykao完成签到,获得积分10
48秒前
WXT发布了新的文献求助10
52秒前
54秒前
范振杰完成签到,获得积分10
56秒前
shimhjy应助dorsun90采纳,获得20
56秒前
WXT完成签到,获得积分10
58秒前
斯文的访烟完成签到,获得积分10
59秒前
繁荣的青旋完成签到,获得积分10
1分钟前
两到三个字符完成签到,获得积分10
1分钟前
1分钟前
SASI完成签到 ,获得积分10
1分钟前
阿秋秋秋完成签到 ,获得积分10
1分钟前
许成泽完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346424
关于积分的说明 10329241
捐赠科研通 3062881
什么是DOI,文献DOI怎么找? 1681222
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702