Channel Estimation for RIS-Empowered Multi-User MISO Wireless Communications

无线 频道(广播) 计算机科学 电子工程 电信 计算机网络 工程类
作者
Li Wei,Chongwen Huang,George C. Alexandropoulos,Chau Yuen,Zhaoyang Zhang,Mérouane Debbah
出处
期刊:IEEE Transactions on Communications [IEEE Communications Society]
卷期号:69 (6): 4144-4157 被引量:531
标识
DOI:10.1109/tcomm.2021.3063236
摘要

Reconfigurable Intelligent Surfaces (RISs) have been recently considered as an energy-efficient solution for future wireless networks due to their fast and low-power configuration, which has increased potential in enabling massive connectivity and low-latency communications. Accurate and low-overhead channel estimation in RIS-based systems is one of the most critical challenges due to the usually large number of RIS unit elements and their distinctive hardware constraints. In this paper, we focus on the uplink of a RIS-empowered multi-user Multiple Input Single Output (MISO) uplink communication systems and propose a channel estimation framework based on the parallel factor decomposition to unfold the resulting cascaded channel model. We present two iterative estimation algorithms for the channels between the base station and RIS, as well as the channels between RIS and users. One is based on alternating least squares (ALS), while the other uses vector approximate message passing to iteratively reconstruct two unknown channels from the estimated vectors. To theoretically assess the performance of the ALS-based algorithm, we derived its estimation Cram\'er-Rao Bound (CRB). We also discuss the downlink achievable sum rate computation with estimated channels and different precoding schemes for the base station. Our extensive simulation results show that our algorithms outperform benchmark schemes and that the ALS technique achieves the CRB. It is also demonstrated that the sum rate using the estimated channels always reach that of perfect channels under various settings, thus, verifying the effectiveness and robustness of the proposed estimation algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强不言发布了新的文献求助30
刚刚
刚刚
刚刚
科研通AI2S应助znlion采纳,获得10
1秒前
1秒前
MJT10086完成签到,获得积分10
1秒前
科研通AI2S应助lull采纳,获得10
1秒前
小石头完成签到 ,获得积分10
1秒前
dongkk发布了新的文献求助10
1秒前
1秒前
1秒前
ju00完成签到,获得积分10
2秒前
西扬发布了新的文献求助20
2秒前
可爱的猪猪完成签到,获得积分10
2秒前
ha发布了新的文献求助10
2秒前
2秒前
skoch完成签到,获得积分20
2秒前
英俊的铭应助xiyinzhiwu采纳,获得50
3秒前
3秒前
研友_Z119gZ完成签到 ,获得积分10
3秒前
3秒前
sweety完成签到,获得积分10
3秒前
3秒前
我是老大应助xuxu采纳,获得10
3秒前
虎希儿完成签到,获得积分10
3秒前
4秒前
4秒前
华仔应助火星上初翠采纳,获得10
4秒前
5秒前
荷月初六完成签到,获得积分10
6秒前
跳跃的含双完成签到,获得积分10
6秒前
夏傥完成签到,获得积分10
6秒前
狗蛋完成签到,获得积分10
6秒前
害怕的水之完成签到,获得积分10
6秒前
枯风晓月发布了新的文献求助30
7秒前
7秒前
芋泥啵啵发布了新的文献求助10
7秒前
7秒前
FashionBoy应助江峰采纳,获得10
7秒前
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868