Patterns of Metastatic Disease in Patients with Cancer Derived from Natural Language Processing of Structured CT Radiology Reports over a 10-year Period

医学 句号(音乐) 疾病 放射科 病理 声学 物理
作者
Richard Kinh Gian,Kaelan Lupton,P Andrieu,Anisha Luthra,Michio Taya,Karen Batch,Huy Nguyen,Prachi Rahurkar,Lior Gazit,Kevin Nicholas,Christopher J. Fong,Natalie Gangai,Nikolaus Schultz,Farhana Zulkernine,Varadan Sevilimedu,Krishna Juluru,Amber L. Simpson,Hedvig Hricak
出处
期刊:Radiology [Radiological Society of North America]
卷期号:301 (1): 115-122 被引量:28
标识
DOI:10.1148/radiol.2021210043
摘要

Background Patterns of metastasis in cancer are increasingly relevant to prognostication and treatment planning but have historically been documented by means of autopsy series. Purpose To show the feasibility of using natural language processing (NLP) to gather accurate data from radiology reports for assessing spatial and temporal patterns of metastatic spread in a large patient cohort. Materials and Methods In this retrospective longitudinal study, consecutive patients who underwent CT from July 2009 to April 2019 and whose CT reports followed a departmental structured template were included. Three radiologists manually curated a sample of 2219 reports for the presence or absence of metastases across 13 organs; these manually curated reports were used to develop three NLP models with an 80%-20% split for training and test sets. A separate random sample of 448 manually curated reports was used for validation. Model performance was measured by accuracy, precision, and recall for each organ. The best-performing NLP model was used to generate a final database of metastatic disease across all patients. For each cancer type, statistical descriptive reports were provided by analyzing the frequencies of metastatic disease at the report and patient levels. Results In 91 665 patients (mean age ± standard deviation, 61 years ± 15; 46 939 women), 387 359 reports were labeled. The best-performing NLP model achieved accuracies from 90% to 99% across all organs. Metastases were most frequently reported in abdominopelvic (23.6% of all reports) and thoracic (17.6%) nodes, followed by lungs (14.7%), liver (13.7%), and bones (9.9%). Metastatic disease tropism is distinct among common cancers, with the most common first site being bones in prostate and breast cancers and liver among pancreatic and colorectal cancers. Conclusion Natural language processing may be applied to cancer patients' CT reports to generate a large database of metastatic phenotypes. Such a database could be combined with genomic studies and used to explore prognostic imaging phenotypes with relevance to treatment planning. © RSNA, 2021 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不死鸟完成签到,获得积分10
刚刚
Allen发布了新的文献求助10
刚刚
曹孟德完成签到,获得积分10
1秒前
1秒前
六六完成签到,获得积分20
2秒前
2秒前
2秒前
佳俊发布了新的文献求助10
3秒前
wangzhaorong发布了新的文献求助10
3秒前
murrayss完成签到,获得积分10
3秒前
8R60d8应助Hertz采纳,获得10
4秒前
4秒前
5秒前
科目三应助无名小卒采纳,获得10
5秒前
英俊的铭应助散作满河星采纳,获得10
5秒前
5秒前
冷静绿旋完成签到,获得积分10
5秒前
5秒前
丘比特应助舒适松鼠采纳,获得10
6秒前
wangjie发布了新的文献求助10
6秒前
震动的梦山完成签到,获得积分10
6秒前
吉吉完成签到 ,获得积分10
7秒前
7秒前
玩命的萃完成签到,获得积分10
7秒前
123456发布了新的文献求助10
7秒前
admin发布了新的文献求助10
7秒前
隐形曼青应助六六采纳,获得10
8秒前
HH发布了新的文献求助10
8秒前
务实的一斩完成签到 ,获得积分10
8秒前
9秒前
科研小白完成签到,获得积分10
9秒前
9秒前
9秒前
小丸子发布了新的文献求助10
9秒前
Siriluck完成签到 ,获得积分10
9秒前
成就双双发布了新的文献求助10
12秒前
亚尔发布了新的文献求助10
12秒前
呜呜呜啦完成签到,获得积分10
12秒前
JamesPei应助我笑着童年采纳,获得10
12秒前
粗犷的皮卡丘完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490563
求助须知:如何正确求助?哪些是违规求助? 4589061
关于积分的说明 14423410
捐赠科研通 4521097
什么是DOI,文献DOI怎么找? 2477169
邀请新用户注册赠送积分活动 1462514
关于科研通互助平台的介绍 1435329