Patterns of Metastatic Disease in Patients with Cancer Derived from Natural Language Processing of Structured CT Radiology Reports over a 10-year Period

医学 句号(音乐) 疾病 放射科 病理 声学 物理
作者
Richard Kinh Gian,Kaelan Lupton,P Andrieu,Anisha Luthra,Michio Taya,Karen Batch,Huy Nguyen,Prachi Rahurkar,Lior Gazit,Kevin Nicholas,Christopher J. Fong,Natalie Gangai,Nikolaus Schultz,Farhana Zulkernine,Varadan Sevilimedu,Krishna Juluru,Amber L. Simpson,Hedvig Hricak
出处
期刊:Radiology [Radiological Society of North America]
卷期号:301 (1): 115-122 被引量:28
标识
DOI:10.1148/radiol.2021210043
摘要

Background Patterns of metastasis in cancer are increasingly relevant to prognostication and treatment planning but have historically been documented by means of autopsy series. Purpose To show the feasibility of using natural language processing (NLP) to gather accurate data from radiology reports for assessing spatial and temporal patterns of metastatic spread in a large patient cohort. Materials and Methods In this retrospective longitudinal study, consecutive patients who underwent CT from July 2009 to April 2019 and whose CT reports followed a departmental structured template were included. Three radiologists manually curated a sample of 2219 reports for the presence or absence of metastases across 13 organs; these manually curated reports were used to develop three NLP models with an 80%-20% split for training and test sets. A separate random sample of 448 manually curated reports was used for validation. Model performance was measured by accuracy, precision, and recall for each organ. The best-performing NLP model was used to generate a final database of metastatic disease across all patients. For each cancer type, statistical descriptive reports were provided by analyzing the frequencies of metastatic disease at the report and patient levels. Results In 91 665 patients (mean age ± standard deviation, 61 years ± 15; 46 939 women), 387 359 reports were labeled. The best-performing NLP model achieved accuracies from 90% to 99% across all organs. Metastases were most frequently reported in abdominopelvic (23.6% of all reports) and thoracic (17.6%) nodes, followed by lungs (14.7%), liver (13.7%), and bones (9.9%). Metastatic disease tropism is distinct among common cancers, with the most common first site being bones in prostate and breast cancers and liver among pancreatic and colorectal cancers. Conclusion Natural language processing may be applied to cancer patients' CT reports to generate a large database of metastatic phenotypes. Such a database could be combined with genomic studies and used to explore prognostic imaging phenotypes with relevance to treatment planning. © RSNA, 2021 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mo应助嘻嘻采纳,获得10
1秒前
科研通AI5应助称心小鸭子采纳,获得10
2秒前
jmy发布了新的文献求助10
4秒前
4秒前
flashmk完成签到,获得积分10
4秒前
icecream完成签到,获得积分10
5秒前
小贤完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
情怀应助奋斗思柔采纳,获得10
6秒前
7秒前
hukun100完成签到,获得积分10
8秒前
9秒前
9秒前
白开水完成签到,获得积分10
10秒前
若水完成签到,获得积分10
12秒前
Morning发布了新的文献求助10
13秒前
2877321934发布了新的文献求助10
13秒前
xinyu完成签到,获得积分10
13秒前
16秒前
口子口戈发布了新的文献求助10
16秒前
wanci应助小叶子采纳,获得10
17秒前
无我完成签到,获得积分10
18秒前
健康的火发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
细腻的海露完成签到 ,获得积分10
21秒前
MaskRuin完成签到,获得积分10
21秒前
认真的裙子完成签到,获得积分10
21秒前
2877321934完成签到,获得积分10
21秒前
22秒前
22秒前
小蘑菇应助123采纳,获得10
23秒前
天天快乐应助科研通管家采纳,获得10
24秒前
linkman应助科研通管家采纳,获得30
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
gexzygg应助科研通管家采纳,获得10
24秒前
gexzygg应助科研通管家采纳,获得10
24秒前
上官若男应助科研通管家采纳,获得10
24秒前
ED应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4277009
求助须知:如何正确求助?哪些是违规求助? 3805771
关于积分的说明 11924581
捐赠科研通 3452530
什么是DOI,文献DOI怎么找? 1893534
邀请新用户注册赠送积分活动 943620
科研通“疑难数据库(出版商)”最低求助积分说明 847487